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Abstract(
This! deliverable! presents! the! state! of! the! distributed! storage! layer! supporting! the! LEADS!
platform! at!M24.! This! layer! consists! in! a! key%value! store!with! extended! capabilities! to! be!
deployed! in! a! federation! of!micro%clouds.!We! first! describe! the! requirements! of! the! key%
value! store! in! relation! to! the! data%as%a%service! (DaaS)! model! being! developed! in! LEADS.!
Then,!we!recall!the!list!of!features!defined!in!D2.2!to!satisfy!these!requirements,!and!detail!
the!state!of!our!prototype! implementation!at!M24.!For! the! features!currently! in%progress,!
we!review!the!research!challenges!that!we!have!to!address!during!the!M25%M36!period! in!
order! to! fulfil! their!developments.! The! last!part!of! this!document!presents! several! experi%
mental!results!that!assess!in!practice!the!capabilities!of!the!distributed!storage!layer.!!
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GLOSSARY(

(

EU! European!Union!
FP7! Seventh!Framework!Programme!
Micro%cloud! A!cluster!of!machines!with!virtualization!capabilities!
Node! A!machine!inside!a!micro%cloud!
VM! Virtual!Machine!
IaaS! Infrastructure%as%a%service!
DaaS! Data%as%a%service!
KVS! Key%Value!Store!
FUSE! Filesystem!in!User!Space!
CAP! Consistency!Availability!Partition!tolerance!
DoW! Declaration!of!Work!
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1. Executive)Summary(
Most!of!the!knowledge!that!can!be!derived!from!public!data!sets!is!only!available!to!a!handful!of!In%
ternet%scale!corporations.!Such!knowledge!is!however!at!the!heart!of!promising!business!models!for!
companies!that!have!the!capacity!to!store!and!analyze!this!large!amount!of!data.!The!objective!of!
LEADS!is!to!investigate!a!novel!approach!that!facilitates!data%as%a%service!(DaaS)!such!that!the!real%
time!processing!of!large!amount!of!public!data!becomes!economically!and!technically!feasible!even!
for!small!and!medium!enterprises!(SMEs)!and!for!companies!which!are!not!primarily!focusing!on!IT!
services.!!!
!
With!more!details,!the!approach!proposed!in!LEADS!consists!in!aggregating!into!a!federation!of!mi%
cro%clouds!the!infrastructures!required!by!these!multiple!SMEs!and!client!companies.!This!aggrega%
tion!increases!the!amount!of!data!storage!and!computational!power!available!to!a!level!where!an!
SME!has!enough!sufficient!resources!to!process!public!data.!This!approach!raises!several!challenges.!
In!particular,!it!relies!on!an!efficient!distributed!storage!system!which!runs!on!a!collection!of!micro%
clouds,!provided!by!the!participating!SMEs!and!companies!or!offered!by!an!infrastructure!provider!
such!as!LEADS!partner!Cloud&Heat.!!!WP2!is!responsible!for!the!design!and!implementation!of!this!
storage!layer.!The!core!challenges!in!designing!such!a!layer!are!(i)!the!dependability!of!the!whole!in%
frastructure!in!face!of!faults!at!both!scales!%!inside!and!between!the!micro%clouds,!(ii)!the!necessity!of!
leveraging!the!two%level!infrastructure!of!LEADS!for!performance,!and!(iii)!the!ability!to!deal!with!big!
data!extracted!from!public!Web!resources!and!contributed!by!companies!themselves.!
!
In!this!deliverable,!we!present!the!state!of!the!storage!layer!at!core!of!the!LEADS!platform.!This!layer!
consists!in!a!key%value!store!with!extended!capabilities,!to!be!deployed!in!a!federation!of!micro%
clouds.!We!first!recall!the!architecture!targeted!in!LEADS,!as!well!as!the!usage!of!the!storage!layer!by!
higher!tiers!of!the!project!(developed!in!WP1,!WP3!and!WP4).!Then,!we!list!the!key!features!that!are!
currently!available!in!the!storage!layer!and!present!the!additions!we!made!in!comparison!to!D2.2!
(M12).!In!particular,!we!detail!the!key/value!API!at!the!micro%clouds!federation!level,!the!implemen%
tation!of!the!explicit!data!placement!and!retrieval,!the!multi%version!support!and!the!state!of!our!
toolkit!for!automated!deployment!and!configuration!of!the!storage!layer.!Then,!we!present!several!
experiments!that!demonstrate!the!capabilities!of!our!current!prototype!and!evaluate!its!overall!per%
formance.!!The!appendix!of!this!document!contains!the!scientific!contributions!which!were!produced!
by!WP2!during!the!M13%M24!period.!
!
! !



Deliverable)D2.4)

Agile)and)secure)prototype)of)the)key;value)store)

)

!
)

2. Introduction(
This!document!describes!the!state!of!the!storage!layer!supporting!the!LEADS!service!at!M24.!Follow%
ing!the!DoW!of!the!project,!we!applied!an!iterative!development!to!build!the!necessary!functionali%
ties!supporting!the!storage!layer!requirements!in!LEADS.!We!started!from!a!functional!storage!on!a!
single!micro%cloud!having!a!modular!design!(described!in!detail!in!D2.2).!In!the!last!period,!we!de%
signed!and!partially!implemented!the!features!required!to!support!a!micro%cloud!federation.!!
!

The!remainder!of!this!document!is!organized!as!follows.!Section!3!recalls!the!architecture!targeted!in!
LEADS,!i.e.,!a!federation!of!micro%clouds,!and!lists!the!requirements!of!the!storage!layer!in!regard!to!
its!usage!by!higher!tiers.!Section!4!details!the!features!already!implemented!in!our!initial!prototype,!
as!well!as!the!features!whose!integration!is!currently!in%progress.!With!respect!to!the!latter,!we!also!
introduce!a!list!of!related!research!opportunities.!In!Section!5,!we!present!a!detailed!evaluation!of!
our!current!prototype.!We!conclude!this!document!in!Section!7.!The!appendix!contains!(peer%
reviewed)!publications!produced!during!the!period.!

!
! !
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3. Overview'of'the$LEADS&storage"layer(
In!this!section,!we!recall!the!architecture!targeted!in!the!context!of!LEADS.!Then,!we!present!an!
overview!of!the!functional!and!non%functional!requirements!for!the!storage!layer.!The!interested!
reader!may!consult!D2.2!for!further!details.!
!

3.1 Targeted(architecture(and(associated(failure(model(

The!LEADS!platform!is!realized!by!a!collection!of!micro!data%centers!or!micro;clouds!(Figure!1).!Each!
micro%cloud!consists!of!a!dozen!of!servers!with!virtualization!capabilities!connected!to!a!local%area!
network.!Connections!to!clients!of!the!platform,!to!other!micro%clouds!and!to!clouds!in!the!public!
space!take!place!through!a!wide%area!network.!The!availability!of!optical!fibres!physical!links!makes!
the!interaction!over!these!links!very!efficient.!Nevertheless,!there!is!at!least!an!order!of!magnitude!of!
performance%degradation!(in!term!of!bandwidth!and!message!delay)!between!the!link!outside!and!
inside!a!micro%cloud.!
!
!

!

Figure(1:(High>level(architecture(of(the(LEADS(storage(layer.(

!
The!architecture!targeted!in!LEADS!requires!considering!a!two;level)failure)model!where!both!a!serv%
er!inside!a!micro%cloud!and!a!micro%cloud!as!a!whole!can!fail.!Indeed,!while!the!simultaneous!failure!
of!all!servers!inside!a!micro%cloud!is!unlikely,!each!micro%cloud!is!typically!connected!through!a!single!
link!to!other!micro%clouds,!to!the!clients,!and!to!public!data!sources.!The!failure!of!this!unique!link!
results!in!the!apparent!failure!of!the!whole!micro%cloud!for!externally!connected!components.!Other!
external!events!such!as!natural!disasters!or!power!outages!can!also!disrupt!the!whole!micro%cloud.!
(
As!a!consequence!of!the!above!failure!model,!we!must!consider!a!decentralized)architecture.!In!other!
words,!the!use!of!a!centralized,!omniscient,!and/or!permanently!connected!component!that!would!
run!in!one!of!the!micro%cloud!is!prohibited.!If!we!need!a!component!that!orchestrates!the!storage!
layer!and!the!placement!of!data,!this!component!must!be!abstracted!by!a!fully!decentralized!and!de%
pendable!mechanisms.!Inside!each!micro%cloud,!dependability!mechanisms!will!ensure!that!the!ser%
vices!provided!to!the!clients!and!to!other!micro%clouds!are!dependable!and!highly!available.!At!the!
higher!level,!additional!mechanisms!will!treat!each!micro%cloud!as!a!single,!fallible!entity!of!the!sys%
tem.!
!
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Elasticity!refers!to!the!ability!to!add!or!remove!machines!to!the!system.!In!the!LEADS!storage!layer,!
horizontal!elasticity!is!considered!and!should!take!two!forms:!adding!or!removing!a!machine!to!a!mi%
cro%cloud,!and!adding!or!removing!a!micro%cloud!from!the!system.!We!note!here!that!(i)!when!the!
configuration!of!the!storage!layer!changes,!the!load!must!be!automatically!balanced!without!interfer%
ing!with!on%going!computations!and!with!existing!data!collections,!and!(ii)!the!heterogeneity!of!the!
micro%clouds!should!also!be!taken!into!account.!Item!(i)!falls!under!the!scope!of!WP2,!whereas!WP4!
is!in!charge!of!item!(ii).!
!

Due!to!the!performance!gap!between!local!and!wide%area!network!connections,!access)locality!is!of!
paramount!importance!to!the!efficiency!of!the!system.!At!local!scale,!since!a!micro%cloud!is!small,!
and!internal!connections!are!fast,!we!employ!traditional!techniques!to!partition!the!load.!At!the!fed%
eration!scale,!the!system!must!support!appropriate!data!placement!and!scheduling!policies!to!lever%
age!locality.!These!two!aspects!are!under!the!responsibility!of!WP4;!the!storage!layer!should!offer!
appropriate!information)reporting)and!mechanisms)to!implement!WP4!policies.!!
(

3.2 Data>as>a>Service(model(and(impact(on(the(storage(layer(

The!service!model!of!the!LEADS!DaaS!(data%as%a%service)!platform!combines!two!forms!of!data:!public!
data!extracted!from!various!sources,!e.g.,!from!the!Web,!and!private!data!created!by!the!users!of!the!
service.!Accesses!to!both!forms!of!data!must!be!simple,!and!the!API!should!correspond!to!well%
established!abstractions!for!manipulating!data.!Below,!we!further!detail!the!two!types!of!data,!and!
how!they!impact!the!storage!layer.!
!
Public)data!is!immutable.!It!is!stored!and!made!available!in!multiple!versions.!Each!version!of!a!data!
item!reflects!the!time!at!which!it!was!created!in!the!storage!layer.!The!storage!of!public!data!is!not!
encrypted.!If!applicable,!it!can!be!compressed!and!uncompressed!on!the!fly.!Public!data!is!typically!
structured!%!for!instance!it!can!form!a!graph.!Navigation!through!this!data!may!benefit!from!indexing!
mechanisms!and!access!methods!that!expose!this!structure.!However,!the!primary!interface!pro%
posed!to!access!data!is!flat:!the!storage!system!remains!oblivious!of!the!nature!and!the!links!between!
data!elements.!Since!public!data!is!immutable,!it!should!be!replicated!as!needed!inside!a!micro%cloud!
and!across!multiple!micro%clouds!(a!minimum!number!of!replicas!can!be!necessary!to!ensure!durabil%
ity!of!the!data!in!the!presence!of!micro%clouds!faults).!
!
Private)data!is!mutable!and!its!privacy!must!be!preserved!through!appropriate!encryption)mecha;

nisms.!Users!and!applications!may!also!require!that!a!private!data!element!is!stored!in!a!particular!
region,!or!outside!a!particular!region!(e.g.,!for!legal!reasons).!Since!private!data!is!mutable,!it!must!be!
replicated!on!multiple!machines!to!guarantee!dependability.!Furthermore,!accesses!must!be!possible!
on!any!copy!and,!therefore,!consistency!must!be!enforced!accordingly.!Multiple!consistency!levels!
are!possible.!A!strong!consistency!level!typically!requires!expensive!synchronization!and!communica%
tion!between!nodes.!The!nature!of!the!consistency!level!(strong,!weak,!etc.)!depends!on!the!data!and!
on!the!application.!The!support!for!several,!co%existing!consistency!models!permits!a!wider!range!of!
applications!to!operate!on!top!of!the!storage!layer.!!
(
While!the!performance!of!the!storage!layer!for!accessing!private!data!is!important,!it!is!even!more!
for!public!data.!Indeed,!massive!computations!on!public!data!are!expected!to!extract!meaningful!in%
formation,!and!are!thus!likely!to!be!accessed!by!many!clients!simultaneously.!In!contrast,!private!da%
ta!sets!are!expected!to!be!smaller!and!should!experience!less!traffic.!Therefore,!functionalities!can!be!
considered!as!more!important!than!raw!performance!in!this!latter!case.!
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The!LEADS!platform!offers!querying!and!extraction!mechanisms,!defined!in!WP3.!Queries!can!be!per%
sistent!and!operate!on!the!data!items!obtained!through!the!extraction!service!(WP1).!Queries!may!
be!injected!several!times!into!the!system!and!therefore!operate!on!similar!data!sets.!The!storage!lay%
er!supports!these!queries!by!allowing!the!creation!of)collections.!A)collection)is!defined!on!a!subset!of!
the!data!and!it!enables!a!fast!and!direct!access!to!the!items!that!match!the!given!query,!or!for!which!
the!access!is!not!done!primarily!by!the!name!of!the!item!but!according!to!another!query.!!
!
( (
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4. Implementation(
This!section!describes!the!current!state!of!the!LEADS!storage!layer!at!M24.!Following!the!DoW,!we!
applied!an!iterative!development!of!the!functionalities.!We!started!from!a!functional!storage!de%
ployed!in!a!single!micro%cloud!(M12!prototype),!on!top!of!which!we!developed!a!micro%cloud!federa%
tion!storage.!
!
Table!1:!Implemented!and!in%progress!features!in!the!M24!prototypelists!the!features!imple%
mented!(in!green)!and!the!features!whose!implementation!is!in%progress!(in!yellow).!Features!with!a!
star!(*)!were!already!implemented!and!described!in!deliverable!D2.2.!We!briefly!recall!their!roles!and!
functionalities!in!this!deliverable.!!
!
Features!are!classified!according!to!the!fact!that!they!target!either!a!single!micro%cloud!(C)!or!the!
federation!(F).!!Please!note!that!in!order!to!help!the!reader!the!numbering!of!the!features!has!
changed!in!comparison!to!D2.2.!
!

Features! Single!micro%cloud! Federation!

Key/value!store!API! C11*! F11!
Listener!API!! C12! F12!

Data!collection!API! C13! F13!

Fault%tolerance!mechanisms! C21*! F21!
Elasticity! C22*! F22!

Consistent!hashing!based!data!placement! C31*!
!Explicit!and!constrained!data!placement! !! F31!

Data!location!retrieval! !! F32!

Total!order!based!replication! C41*! !!
Primary!and!quorum!based!replication! !! F41!

Eventual!consistency!based!replication! C42! F42!

Heat!maps!support! !! F51!
Automatic!caching!of!public!data! !! F52!
Versioning! C61! F61!
Redirection!support! !! F62!
Factory!of!atomic!objects! C71! F71!!
FUSE%based!file!system!interface! !C81*!

!Security!and!authentication! C91!
!Support!for!deployment!and!configuration! C101! F101!

Table(1:(Implemented(and(in>progress(features(in(the(M24(prototype(

!
In!what!follows,!we!describe!in!detail!each!of!these!features.!Where!appropriate,!we!also!discuss!on%
going!research!developments,!as!well!as,!future!opportunities!that!may!be!investigated!in!the!con%
text!of!the!LEADS!storage!layer.!
!
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4.1 Overview(

At!the!scale!of!a!micro%cloud,!the!LEADS!storage!layer!consists!of!Infinispan,!an!open!source!industri%
al%grade!key%value!store![Ispn,!Ispn%doc].!At!the!federation!level,!it!consists!of!Infinispan%ensemble,!
or!simply!Ensemble,!an!aggregation!of!geographically%distributed!Infinispan!instances.!!
!
Red!Hat!is!the!main!developer!of!Infinispan.!The!other!LEADS!partners!(BM,!TSI,!TUD!and!UniNE)!con%
tribute!to!Infinispan!in!collaboration!with!Red!Hat!by!implementing!specific!features!of!the!storage!
layer.!These!features!are!first!added!to!the!development!branch!of!Infinispan,!then!!to!eventually!
merged!into!the!stable!branch!(currently!Infinispan!7).!
!

4.2 List(of(Features(

In!what!follows,!we!detail!the!implemented!features!and!the!in%progress!features!of!the!LEADS!stor%
age!layer,!both!at!the!level!of!a!single!micro%cloud!and!at!the!level!of!the!federation!of!micro%clouds.!!
!

Single(micro>cloud(level(
!
The!core!of!Infinispan!consists!in!a!specialised!shared!data!structure,!tuned!to!and!geared!for!a!great!
degree!of!concurrency!—!especially!on!multi%CPU!and!multi%core!architectures.!Most!of!the!internals!
of!Infinispan!are!essentially!lock%!and!synchronization%free,!favouring!state%of%the%art!non%blocking!
algorithms!and!techniques!wherever!possible.!As!pointed!out!previously,!the!main!developer!of!Infin%
ispan!is!Red!Hat.!Other!partners!contribute!to!Infinispan!in!a!more!research%oriented!manner!by!
branching!and!quickly!developing!cutting%edge!ideas!which!will!be!later!merged!into!the!code!base.!
Infinispan!is!open%source:(all!LEADS%specific!developments!are!made!public!either!in!the!main!branch!
of!Infinispan!or!on!public!code!repositories.!
!

C11*(Key>value(Store(API((single(micro>cloud)(

The!key%value!store!API!of!Infinispan!consists!in!a!set!of!Cache!interfaces.!Each!cache!extends!ja%
va.util.Map![Ispn%API].!A!client!accesses!the!various!caches!stored!in!Infinispan!through!a!manage%
ment!entity!named!CacheManager.!!The!cache!data!structure!is!highly!concurrent,!designed!from!the!
ground%up!to!take!advantage!of!the!characteristics!of!modern!architectures!while!at!the!same!time!
providing!distributed!sharing!capabilities.!A!cache!object!is!backed!by!a!peer%to%peer!network!archi%
tecture!to!distribute!the!state!efficiently!within!a!data!center.!In!addition!to!the!peer%to%peer!archi%
tecture!of!Infinispan,!to!which!clients!can!connect!directly!from!any!node!provided!they!are!running!
on!the!same!cluster!(known!as!embedded!mode),!a!remote!access!mode!(based!on!a!classical!cli%
ent/server!architecture)!for!remote!clients!is!also!supported!via!the!HotRod!protocol![HotRod].!
HotRod!provides!the!ability!to!run!multiple!instances!of!Infinispan!as!servers!and!connect!to!them!
using!a!plethora!of!clients!—!both!written!in!Java!as!well!as!other!popular!open!source!and!proprie%
tary!platforms.!
!

C12((Listener(API((single(micro>cloud)(
Core)contribution:!remote!listener,!converter!and!filter.!
!
Streams!are!a!common!distributed!programming!pattern!in!nowadays!applications!(e.g.,!Twitter).!
One!of!the!usages!envisioned!in!LEADS!consists!of!a!set!of!workers!aggregating!the!output!of!a!dis%
tributed!crawling!engine!(D1.2)!to!compute!the!PageRank!score!of!webpages!of!interest!(D3.2)!and!to!
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support!domain%specific!operators!in!the!form!of!plugins!(D3.4!and!D5.4).!!To!support!stream%
oriented!architectures!and!in!particular!LEADS!DaaS!requirements,!Infinispan!offers!a!listener!API:!
once!a!client!is!registered!in!a!cache,!it!gets!notified!of!every!operations!occurring!on!the!data!stored!
there.!Listeners!allow!implementing!communication!between!LEADS!components!as!well!as!support%
ing!the!instantaneous/persistent!query!model!described!in!our!use!cases.!
!
At!the!beginning!of!the!LEADS!project,!the!eventing!mechanism!was!solely!available!in!embedded!
mode!(e.g.,!the!client!is!in!the!same!memory!space!as!an!Infinispan!node!generating!events).!In!Infin%
ispan!7,!developed!during!period!M13%M24,!Red!Hat!extended!this!API!to!operate!in!clustered!mode!
(the!client!is!in!the!same!micro%cloud!as!an!Infinispan!deployment)!and!in!remote!mode!(using!the!
HotRod!protocol).!In!addition,!it!is!also!possible!now!to!optionally!customize!the!listener!by!adding!
filtering!mechanisms!(e.g.!KeyFilter!classes)!as!well!as!a!data!conversion!mechanisms!(e.g.!Converter!
classes).!The!first!mechanism!filters!keys!that!may!trigger!an!event,!while!the!later!converts!the!exist%
ing!value!to!retain!only!useful!information.!Both!mechanisms!are!also!useful!to!reduce!the!payload!
sent!to!the!client.!Finally,!a!special!listener!(see!D3.4)!supports!the!definition!of!client%provided!
plugins,!which!allow!performing!domain%specific!operations!on!incoming!data.!
!

C13(Data(collections(API((single(micro>cloud)(
Core)Contribution:!Map/Reduce!framework!and!distributed!entry!iterator.!
!
Infinispan!offers!a!Map/Reduce!framework!to!query!data!collections!stored!as!caches.!This!frame%
work!is!used!in!WP3!to!develop!relational%oriented!queries!(e.g.,!JOIN).!!In!Infinispan!7,!several!opti%
mizations!have!been!made!to!this!
framework!in!order!to!improve!perfor%
mance.!First,!the!map!and!the!reduce!
phases!are!now!running!in!parallel!at!
each!node.!Second,!the!resulting!data!
can!be!stored!in!a!(user%defined)!cache,!
thus!reducing!the!overload!at!the!node!
that!started!the!Map/Reduce!task.!
!
In!Figure!3,!we!illustrate!the!core!bene%
fits!brought!by!these!improvements!of!
the!Map/Reduce!framework.!More!
precisely,!this!figure!compares!the!per%
formances!of!the!old!and!the!new!
framework!using!a!Map/Reduce!word!
count!task,!when!varying!the!amount!of!
entries!to!count.!!We!can!observe!that!
our!modifications!are!more!than!prom%
ising.!In!this!use!case,!the!Map/Reduce!
task!execution!speed!and!throughput!
improvement!are!between!fourfold!and!

sixfold!when!entries!are!of!small!size.!
!
The!interested!reader!may!consult!ad%
ditional!details!on!the!Map/Reduce!
framework!online![WordCount,!Ispn%doc].!!

Figure(2:(M/R(Word(Count(Performance((
(top:(Infinispan(7,((bottom:(Infinispan(6)(
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In!addition!to!the!Map/Reduce!support,!Infinispan!offers!a!distributed!Entry!Iterator!to!retrieve!col%
lections!of!stored!data.!This!mechanism!allows!the!iteration!over!all!entries!in!the!cache.!Iterating!
over!all!entries!in!the!cache!has!always!been!a!highly!important!feature.!Existing!methods!(entrySet(),!
keyset()!and!size())!in!the!previous!prototype!of!the!key%value!store!were!not!a!good!fit!because!of!
potential!out%of%memory!errors.!As!in!the!cluster!listener,!it!allows!to!set!an!optional!KeyFilter!and!
Converter.!The!general!idea!is!to!fetch!the!keys!remotely!in!chunks!to!avoid!overloading!the!request%
ed!node.!!
!

C21*((Fault>tolerance(mechanisms((single(micro>cloud)(

Infinispan!offers!high!availability!via!making!replicas!of!the!shared!cache!state!across!a!network!as!
well!as!optionally!persisting!state!to!configurable!cache!stores.!To!that!end,!Infinispan!is!built!upon!
the!JGoups!communication!layer![JGroups].!This!layer!allows!a!set!of!servers!to!construct!a!reliable!
membership!service,!by!employing!failure!detection,!appropriate!group!communication!primitives!
and!discovery!services.!
!

C22*((Elasticity((one(micro>cloud)(

C31*((Consistent(hashing>based(data(placement((single(micro>cloud)(

Data!placement!and!retrieval!in!Infinispan!employs!consistent!hashing![ConsHash].!The!hash!function!
in!use!is!the!MurmurHash!algorithm,!a!non%cryptographic!hash!function!suitable!for!general!hash%
based!lookup![Murmur].!Consistent!hashing!is!a!familiar!technique!in!distributed!data!storage!sys%
tems.!It!provides!both!elasticity,!i.e.,!the!ability!to!add!and!remove!nodes!at!low%cost,!and!load!bal%
ancing.!!
!

C41*((Total(order>based(replication((single(micro>cloud)(

Consistency!guarantees!on!the!put/get!operations!in!Infinispan!are!tunable.!This!interesting!property!
comes!from!the!fact!that!all!the!communications!between!servers!are!based!on!the!JGroups!library.!
In!particular,!when!a!cache!is!set!at!the!transactional!consistency!level,!operations!are!atomic.1!!This!
means!that!every!read!or!write!operation!at!the!cache!level!behaves!as!in!a!shared%memory!context:!
writes!are!totally!ordered!from!the!perspective!of!the!reads,!and!if!an!operation!op!precedes!in!real%
time!an!operation!op’!then!op’!sees!the!effect!of!op.)This!consistency!level!is!achieved!via!the!use!of!a!
total%order!group!communication!primitive!in!JGroups.!Finally,!it!is!possible!to!obtain!atomicity!when!
using!primary%copy!replication!inside!Infinispan.!
!
C61((Versioning((single(micro>cloud)(
Core)contribution:!convenient!support!to!store/retrieve!multiple!versions!of!a!datum.!
!
A!multi%version!key%value!store!ensures!that!every!put(k,v)!operation!creates!a!new!version!v!of!the!
datum!k,!while!keeping!the!previous!ones.!Storing!most!of!(or!even!all)!the!versions!created!in!the!
history!of!k,!permits!the!clients!to!retrieve!the!state!of!the!data!as!it!was!at!some!point!in!time.!This!
facility!allows!computing!consistent!cut!of!the!stored!data.!A!cut!is!similar!to!a!snapshot!of!the!entire!
state!of!the!storage!at!some!moment!back!in!time,!and!it!allows!to!perform!queries!on!the!state!of!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!In!the!context!of!LEADS,!we!will!not!use!the!transactional!features!of!Infinispan!as!this!is!not!a!re%
quirement!of!the!project.!
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the!stored!Web!graph!a!few!days,!weeks,!etc.!before!the!query!is!issued;!potential!applications!in%
clude!comparing!the!evolution!the!result!of!a!query!originally!not!implemented!as!a!stream!oriented!
query).!Moreover,!it!allows!to!transparently!support!the!storage!of!time!series.!The!typical!use!case!
we!target!by!the!support!of!multi%version!is!to!trace!the!evolution!of!a!large%scale!graph,!e.g.,!part!of!
the!Web!or!a!social!network,!over!time.!
!
Implementing!multi%version!support!
on!top!of!a!key%value!store!requires!
to!build!an!index!of!all!the!versions!
for!each!key.!Such!an!index!should!
allow!executing!efficiently!the!que%
ries!to!retrieve!ranges!of!versions.!
Moreover,!since!the!distribution!of!
versions!is!unlikely!to!be!uniform,!
the!index!should!be!sharded!(i.e.,!
split!in!multiple!parts!or!shards,!and!
each!shard!placed!on!a!separate!
server)!to!evenly!spread!the!load!
across!the!storage!nodes.!
!
!In!addition,!it!is!worth!point!out!that,!in!the!case!of!a!distributed!large!graph!evolving!over!time,!the!
storage!layer!needs!to!(i)!store!only!the!modifications!occurring!between!one!state!and!the!following!
one,!(ii)!cache!the!graph,!re%computing!its!state!on%demand,!and!(iii)!leverage!the!locality!since!most!
operations!requires!navigating!the!graph.!
!
We!implemented!the!support!for!multi%version!on!top!of!Infinispan!that!is!data!agnostic.!!Three!im%
plementations!of!this!feature!are!available.!We!proposed!and!published!a!scientific!paper!that!com%
pares!extensively!these!approaches!at!the!IEEE!SRDS!2014!conference.!This!paper!is!presented!in!Ap%
pendix!B.!
!
Our!first!implementation!consists!in!the!naïve!approach!of!storing!all!the!versions!under!the!same!
key.!The!two!other!approaches!leverages!the!atomic!object!factory!(feature!C17,!detailed!at!page!17)!
to!implement!respectively!a!map!and!a!sharded!map!per!key.!!All!these!implementations!have!a!
common!algorithmic!structure,!but!they!differ!on!some!aspects!having!their!pros!and!cons.!
!
In!the!SRDS!2014!paper!(see!Appendix!B),!we!investigated!the!most!convenient!approach!to!adopt!in!
the!context!of!the!LEADS!applications.!To!that!end,!we!performed!a!detailed!evaluation!of!the!stor%
age!layer!under!a!real!workload!from!Wikipedia!access!traces.!Our!evaluation!highlights!the!inherent!
trade%offs!of!each!implementation,!from!atomic!maps!to!tree%based!and!sharded!tree%based!indexes,!
and!the!specific!adequacy!to!different!workload!patterns.!
!
In!what!follows,!we!briefly!cover!one!of!the!experimental!results!obtained!evaluating!the!various!ap%
proaches.!The!interested!reader!may!refer!to!Appendix!B!for!further!details!and!a!formal!description!
of!the!algorithms.!
!
Versioning(Cost.((Our!evaluation!of!the!prototype!versioned!key%value!store!consists!in!the!re%
execution!of!real!access!traces!on!a!Wikipedia!data!dump!stored!in!the!key%value!store.!To!that!end,!
we!used!a!cluster!of!24!virtualized!4%core!Xeon!2.5!Ghz!machines!with!4GB!of!memory,!running!Gen%

Figure(3:(Storage(cost(with(different(Wikipedia(datasets(and(
for(
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too!Linux!32bits,!and!connected!by!a!virtualized!1!Gbps!switched!network!(available!at!UniNE).!Net%
work!performance,!as!measured!by!the!tools!ping!and!netperf,!is!of!0.3ms!for!a!round%trip!with!a!
bandwidth!of!117MB/s.!Clients!runs!a!modified!version!of!YCSB![YCSB]!that!replays!Wikipedia!access!
trace.!We!use!three!Wikipedia!datasets:!SCN!(Sicilian),!EN!(English)!and!JA!(Japanese).!Properties!of!
these!datasets,!such!as!the!distribution!of!versions,!are!detailed!in!the!publication!in!the!annex.!
!
Figure!2!depicts!the!amount!of!storage!used!per!node!to!load!each!Wikipedia!in!the!distributed!stor%
age.!We!compare!three!of!the!available!implementations:!the!naive!implementation!(Baseline)!that!
wraps!all!the!versions!of!a!datum!k!under!the!same!key,!(Tree)!which!stores!independently!the!index!
and!the!version!in!different!keys,!the!index!being!updated!when!necessary,!and!(Sharding))which!re%
lies!on!a!pattern!similar!to!Tree!except!that!the!index!is!this!time!spread!over!multiple!nodes.!!
!
In!Figure!2,!we!observe!that!the!baseline!mechanism!is!the!less!expensive!for!storing!the!versions:!it!
costs!around!half!the!price!of!the!two!other!mechanisms.!This!difference!is!mainly!explained!by!the!
fact!that!the!two!other!mechanisms!separate!data!from!metadata,!inducing!an!additional!cost!(in!
term!of!versions!and!base!KVS!metadata).!We!also!observe!in!Figure!2!that!by!sharding!the!version!
index!one!must!accept!a!small!overhead,!in!comparison!to!an!approach!where!the!index!is!stored!at!a!
single!storage!node.!This!comes!from!the!fact!that!the!threshold!to!create!a!new!shard!of!the!version!
index!is!set!to!a!default!value!of!1000!versions,!hence!occurring!in!rare!cases.!!
!
In!our!experiments,!the!overhead!of!storing!the!index!independently!from!the!data!is!around!2!times!
the!base!storage!cost.!In!return!to!that!cost,!we!show!in!our!paper!that!with!this!approach!(i)!concur%
rent!write%access!to!versioned!data!is!possible!and!(ii)!access!to!versioned!data!is!one!order!of!magni%
tude!faster.!!
!

C71(Factory(of(atomic(objects((single(micro>cloud)(
Core)contribution:!powerful!and!elegant!concurrent!objects!abstraction.!
!
The!factory!of!atomic!objects!allows!a!client!application!to!build!an!atomic!object!of!her!choice!on!
top!of!Infinispan.!An!atomic!object!is!a!replicated!version!of!a!simple!Java!object.!The!factory!allows!
creating!a!fault%tolerant!object!(since!there!are!multiple!copies!whose!states!are!synchronized,!the!
object!remains!available!if!one!or!several!copies!are!lost,!depending!on!the!replication!factor).!Such!
universal!objects!are!persistent!and!elastic!(both!vertically,!by!increasing!the!number!of!local!threads,!
and!horizontally,!by!increasing!the!number!of!distributed!clients!accessing!it).!!
!
We!built!the!factory!using!the!total!order%based!replication!facility!of!Infinispan.!Our!approach!is!a!
variation!of!the!well%known!state!machine!replication!technique![SMR]!already!at!work!in!multiple!
distributed!systems.!Practically!speaking,!when!the!object!is!created,!we!store!both!a!local!copy!and!
a!proxy!registered!as!a!cache!listener.!We!serialize!every!call!in!a!transaction!consisting!of!a!single!put!
operation.!Once!the!call!gets!de%serialized,!it!is!applied!to!the!local!copy!and,!in!case!the!calling!pro%
cess!was!local,!the!response!value!is!returned!(this!mechanism!is!implemented!via!a!Future!object).!!
!
We!used!the!factory!of!atomic!objects!for!the!implementation!of!the!versioning!support!in!Infinispan!
(feature!C61).!Appendix!B!covers!the!algorithmic!details!of!the!atomic!object!factory.!
!
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C81*(FUSE>based(file(system(interface((single(micro>cloud)(

Distributed!file!storage!services!(DFSS)!offer!a!unified!file!system!view!of!a!distributed!data!store.!As!
for!any!distributed!storage!service,!the!expected!properties!of!a!DFSS!are!consistency,!availability,!
and!tolerance!to!partitions.!The!CAP!theorem![CAP]!states!that!a!distributed!storage!system!can!fully!
support!at!most!two!of!these!three!properties!simultaneously.!Since!a!micro%cloud!may!be!temporar%
ily!disconnected,!and!such!an!event!should!be!supported!in!LEADS,!partition!tolerance!is!mandatory!
in!our!targeted!architecture.!Besides,!an!important!non%functional!requirement!in!LEADS!is!a!clear!
separation!of!concerns!between!the!level!of!the!micro%clouds!and!the!federation!level.!Consequently,!
a!DFSS!system!at!the!federation!level!must!be!built!using!the!data!access!primitives!available!at!the!
lower!level.!To!fulfil!both!requirements,!we!have!worked!on!the!implementation!of!a!DFSS!on!top!of!
a!regular!key%value!store.!The!result!of!this!work!is!FlexiFS![DAIS13],!a!modular!DFSS!that!implements!
a!range!of!state%of%the%art!techniques!for!the!distribution,!replication,!routing,!and!indexing!of!data.!
FlexiFS!was!described!in!detail!in!our!previous!deliverable!D2.2.!
!

C91(Security(and(authentication((
Core!Contribution:!access!control!over!stored!data!and!secure!communication.!
!!
During!the!M13%M24!period,!Infinispan!has!gained!the!ability!to!perform!Access!Control!on!CacheM%
anagers!and!Caches.!In!terms!of!security!and!authentication,!the!set!of!new!functionalities!consists!
in:!

• Coarse%grained!access!control!to!CacheManagers,!Caches!and!data;!!
• Credentials!for!remote!clients!and!encryption!of!the!communication!between!clients!and!

server;!
• Authorization!for!each!node!to!join!the!cluster;!and!!
• Encryption!of!the!communication!channel!between!servers.!

!
In!order!to!maximize!compatibility!and!integration,!Infinispan!uses!widespread!security!standards!
where!possible!and!appropriate,!such!as!X.509!certificates,!SSL/TLS!encryption!and!Kerberos/GSSAPI.!
!
Authorization!in!Infinispan!uses!role%based!access!control.!It!is!configured!at!two!levels:!at!the!cache!
container!and!at!the!level!of!each!cache.!In!the!cache!container!level,!the!client!specifies!the!named!
roles!and!the!permissions!they!grant.!We!give!an!example!below.!
!

<role!name="admin"!permissions="ALL"!/>!
<role!name="reader"!permissions="READ"!/>!
<role!name="writer"!permissions="WRITE"!/>!

! <role!name="supervisor"!permissions="READ!WRITE!EXEC"/>!
!
At!the!level!of!a!cache,!a!client!may!then!specify!a!subset!of!the!authorized!roles.!For!instance,!con%
tinuing!the!example!above,!!
!

<authorization!enabled="true"!roles="admin!reader!writer"!/>!
!
To!interact!with!a!cache,!the!client!needs!a!Java!authentication!and!authorization!service!(JAAS)!sub%
ject![Jaas].!!A!JAAS!subject!represents!a!single!user,!entity!or!system,!in!other!words,!a!client,!re%
questing!authentication.!This!subjects!need!to!be!populated!with!a!set!of!principals!modelling!its!
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properties,!as!well!as!a!mapper!to!map!the!principals!to!the!roles.!The!interaction!is!made!as!in!the!
example!that!follows:!
!

String!value!=!Subject.doAs(mySubject,!new!PrivilegedAction<String>()!{!
@Override!
public!String!run()!{!

return!cacheManager.getCache().get("key");!
}!

});!
!
For!the!Hot!Rod!clients,!the!authentication!is!done!with!the!SASL!framework![SASL].!Leveraging!the!
use!of!SASL,!Infinispan!can!support!many!authentication!mechanisms!out!of!the!box!such!as,!plain!
text,!digest%MD5,!or!GSSAPI.!In!addition,!SASL!allows!external!authentication!where!the!client%
certificate!identity!of!the!underlying!transport!is!used!as!the!credentials.!
!
As!for!Hot!Rod!clients,!the!cluster!authentication!is!implemented!using!SASL!and!the!encryption!using!
SSL/TLS.!Both!protocols!need!to!be!added!and!configured!in!the!JGroups!configuration!at!the!start!of!
the!Infinispan!cluster.!
(

C101*((Support(for(deployment(and(configuration((single(micro>cloud)(
Core)Contribution:!JBossAS!integration!and!OpenNebula!support.!
!
When!one!starts!thinking!about!running!a!distributed!storage!system!on!several!dozens!of!servers,!as!
in!our!typical!micro%cloud!architecture,!management!is!not!an!extra!but!a!necessity.!Moreover,!such!
a!feature!allows!to!configure!conveniently!all!the!machines!in!a!uniform!way!which!is!a!mandatory!
step!to!provide!elastic!storage.!!Infinispan!provides!rich!tooling!in!this!area,!with!many!integration!
opportunities.!In!particular,!Infinispan!is!integrated!with!the!Jboss!Application!Server![JbossAS].!
JBossAS!is!a!Platform%as%a%Service!(PaaS)!which!implements!all!the!features!available!in!the!Java!Plat%
form!Enterprise!Edition!(java!JEE).!During!the!period!M13%M24,!Red!Hat!extended!the!JBossAS!sup%
port!for!Infinispan,!in!particular!aligning!the!embedded!and!JBossAS!configuration!files.!
!
Additionally,!we!have!built!for!the!project!integration!purposes!a!standalone!distribution!of!Infin%
ispan!that!runs!on!top!of!the!OpenNebula!(IaaS)!cloud!environment![OpenNebula,!Leads%dep].!Our!
set!of!scripts,!disk!images!and!OpenNebula!templates!are!used!by!consortium!partners!to!integrate!
their!components!with!the!storage!layer.!This!standalone!version!runs!a!tailored!Gentoo!Linux!distri%
bution.!The!core!of!the!distribution!is!very!modular.!In!addition!to!Infinispan,!it!can!deploy!multiple!
LEADS!services!such!as!our!distributed!crawler!prototype,!or!the!Zookeeper!synchronization!service.!
A!LEADS!service!is!defined!by!an!OpenNebula!template!that!consists!of!two!disk!images.!The!first!im%
age!contains!the!core!of!the!Linux!system;!the!second!disk!image!contains!the!LEADS!service.!To!de%
ploy!a!service!on!an!OpenNebula!platform,!the!user!needs!to!perform!only!very!few!manual!steps.!
For!instance,!to!run!Infinispan,!the!user!instantiates!the!appropriate!template!on!the!desired!nodes.!
Once!all!nodes!are!started,!Infinispan!is!up!and!running!and!a!HotRod!client!can!access!it.!The!discov%
ery!of!the!running!nodes!executing!Infinispan!is!supported!by!an!IP!broadcast!facility!of!the!JGroups!
library.!
!
( (
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C42((Eventual(consistency(based(replication((single(micro>cloud)(
Core)Contribution:!Weakly!consistent!but!converging!shared!data.!!
!
The!addition!of!multi%version!support!to!Infinispan!allows!us!to!offer!an!eventually!consistent!view!of!
the!storage!to!the!clients.!This!feature!is!currently!under!development!|ISPN%999].!Below,!we!briefly!
cover!the!approach!we!use!to!implement!it.!
!
Eventual!consistency!states!that!once!clients!stop!submitting!new!updates,!all!the!replicas!need!to!
converge!to!the!same!state!(of!the!cache)!potentially!after!reconciliation!between!diverging!values.!
Reads!performed!before!this!reconciliation!may!report!multiple!values!and!the!application!has!to!ar%
bitrate!between!these!values.!Eventual!consistency!is!a!more!challenging!consistency!model!for!pro%
grammers!but!allows!for!better!performance!in!the!cases!where!it!is!applicable.!!In!the!context!of!
LEADS,!because!public!data!are!immutable!they!are!subject!to!few!anomalies!under!eventual!con%
sistency.!!Hence,!this!consistency!level!is!a!good!fit!in!such!a!case.!
!
We!plan!to!support!eventual!consistency!by!layering!a!reconciliation!engine!on!top!of!the!versioned!
key%value!store.!This!engine!is!semantics%aware,!in!the!sense!that!the!clients!may!specify!which!rec%
onciliation!policy!to!apply!when!several!concurrent!versions!of!the!same!datum!exists!(e.g.,!last!writ%
er!wins!or!a!more!specific!application%dependent!reconciliation!strategy).!The!reconciliation!engine!
works!as!follows:!!When!a!new!versioned!datum!(k,u)!is!inserted,!we!create!a!versioned!data!(k,v,u))
where!v!is!a!new!version!assigned!to!(k,u).!This!tuple!is!then!inserted!in!Infinispan.!Upon!retrieving!a!
datum!stored!under!the!key!k,!the!storage!first!retrieve!all!the!latest!versions!stored!under!key!k,!
then!it!calls!the!reconciliation!engine!which!outputs!arbitrarily!a!datum)(k,v))which!is!returned!to!the!
client.!A!garbage!collection!mechanism!ensures!that!a!bounded!number!of!versions!may!coexist!at!
some!point!in!time.!
!
!

( (
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Micro>Cloud(Federation(Level!
!
At!the!federation!level,!the!key%value!store!developed!in!WP2!consists!of!Infinispan%ensemble,!or!
simply!Ensemble.!Ensemble!exports!the!core!interface!of!Infinispan!but!is!a!separate!software!entity.!
This!interface!is!implemented!atop!multiple!Infinispan!deployments,!one!on!each!micro%cloud.!Each!
such!deployment!abstracts!the!storage!interface!of!a!micro%cloud.!!
!
Ensemble!accesses!a!micro%cloud!deployment!via!the!HotRod!protocol!and!the!RemoteCache!API.!An!
EnsembleCache!(respectively,!an!EnsembleCacheManager)!implements!the!BasicCache!(resp.!Basic%
CacheContainer)!API!of!Infinispan.!To!coordinate!geo%distributed!accesses!to!the!storage,!e.g.,!the!
concurrent!creation!of!EnsembleCaches,!Ensemble!stores!both!the!list!of!micro%clouds,!the!definition!
of!each!EnsembleCache!and!their!allocation!in!a!consistent!and!dependable!index!stored!in!the!coor%
dination!service!ZooFence.!ZooFence!is!a!locality%aware!variation!of!ZooKeeper!using!a!principled!
approach!to!service!partitioning.!ZooFence!is!another!contribution!of!WP2,!and!we!describe!it!in!this!
section.!
!

F11(Key/Value(Store(API((federation)(
Core)contribution:!base!KVS!operations!for!the!micro%cloud!federation.!
!
Ensemble!exposes!a!Java!interface!that!consists!of!two!key!components:!an!EnsembleCache!and!an!
EnsembleCacheManager.!An!EnsembleCache!is!a!named!and!typed!instance!of!the!key%value!store!
that!spans!across!the!micro%clouds.!An!EnsembleCacheManager!is!a!container!of!EnsembleCaches.!
Both!abstractions!are!directly!inherited!from!the!Infinispan!API!(respectively!a!Cache!and!a!Ca%
cheContainer).!
!
An!EnsembleCache!contains!multiple!RemoteCaches;!each!RemoteCache!represents!an!Infinispan!
deployment!at!the!scale!of!a!single!micro%cloud.!Calls!to!a!RemoteCache,!and!thus!to!the!backing!In%
finispan!instances,!are!implemented!via!the!HotRod!protocol![Ispn%doc].!Once!an!EnsembleCache!is!
created,!the!user!can!store/retrieve!data!using!the!regular!get()!and!put()!operations.!These!opera%
tions!are!executed!on!the!appropriate!Infinispan!instances!according!to!the!replication!degree!and!
the!consistency!criteria!that!characterize!the!EnsembleCache.!We!detail!these!parameters!in!features!
F21!and!F22.!
!

F12(Listener(API((federation)(
Core)contribution:!eventing!support!over!multiple!micro%clouds.!
!
The!novel!eventing!mechanism!developed!during!M13%M24!(see!feature!C12)!allows!a!full!listener!
API!at!the!federation!level.!Thanks!to!this!mechanism,!when!a!client!wishes!to!listen!cache!events,!
she!simply!registers!to!the!appropriate!remote!cache.!In!the!case!where!the!cache!is!distributed!
across!multiple!micro%clouds,!a!registration!per!micro%cloud!is!necessary!and!duplicates!are!removed!
automatically!in!the!client%side!library!(this!mechanism!is!transparent!to!the!application).!
!
( (
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F22(Primary(and(quorum(based(replication(
F21(Eventual(consistency(based(replication(
Core)contribution:!support!for!strongly%consistent!data!duplication!across!micro%clouds.!
!
From!an!abstract!point!of!view,!an!EnsembleCache!can!be!seen!as!the!construction!of!dependable!
registers!atop!fault%prone!ones.!Indeed,!in!the!targeted!LEADS!architecture,!each!Infinispan!deploy%
ment!operating!in!a!micro%cloud!is!subject!to!be!unresponsive!from!the!outside!(e.g.,!the!micro%cloud!
is!subject!to!a!power!outage!or!the!internet!link!fails).!Based!on!this!observation,!we!developed!En%
semble!using!existing!algorithms!and!principles!taken!from!dependable!shared%memory!computing!
literature.!
!
We!distinguish!two!types!of!EnsembleCache:!a!ReplicatedEnsembleCache!fully!replicates!the!data!it!
holds!to!the!set!of!micro%clouds!it!has!been!assigned!to,!whereas!a!DistributedEnsembleCache!par%
tially!replicates!its!content!across!its!set!of!allocated!micro%clouds.!(The!usage!of!the!terms!“replicat%
ed”!and!“distributed”!come!from!the!terminology!in!use!in!Infinispan).!!
!
ReplicatedEnsembleCache.((With!a!ReplicatedEnsembleCache,!data!is!fully!replicated!across!multiple!
micro%clouds.!A!ReplicatedEnsembleCache!can!be!instantiated!in!various!flavours,!each!flavour!repre%
senting!a!distinct!consistency!level.!Specifically:!!

% WeakEnsembleCache!implements!a!ReplicatedEnsembleCache!with!weakly!consistent!opera%
tions.!The!implementation!is!straightforward:!to!execute!a!put())operation,!the!client!applies!
put()!to!a!quorum!of!RemoteCaches,!and!to!execute!a!get(),!the!client!accesses!(at!random)!
one!of!these!RemoteCaches.!

% SWMREnsembleCache!implements!an!atomic!single%writer!multiple%reader!atomic!API!of!a!
Cache!on!top!of!several!RemoteCaches.!In!this!case,!the!system!makes!use!of!a!primary%
based!replication!schema:!every!read!access!the!primary,!and!a!write!first!writes!to!the!pri%
mary!then!asynchronously!and!in!parallel!to!the!other!caches.!

% MWMREnsembleCache!implements!the!complete!Cache!API!at!the!atomic!level,!offering!an!
atomic!multiple%readers!multiple%writers!cache.!To!implement!this!abstraction,!Ensemble!re%
lies!on!the!following!classical!quorum!algorithm:!when!the!client!executes!a!put(k,v),!a!
MWMREnsembleCache!first!retrieves!the!greatest!version!(timestamp)!t!stored!at!a!quorum!
of!RemoteCaches;!then!it!executes!put(k,(t+1,v))!at!a!quorum!of!RemoteCaches.!This!last!
write!is!conditional.!A)get(k)!operation!executes!a!similar!operation,!i.e.,!first!it!retrieves!the!
value!v!associated!with!the!greatest!timestamp,!and!then!it!writes!back!this!value!before!re%
turning.!!

!
DistributedEnsembleCache.(With!a!ReplicatedEnsembleCache,!data!is!stored!in!a!dependable!man%
ner!and!it!can!also!be!replicated!at!the!local!micro%cloud!in!order!to!improve!the!response!time!of!
Ensemble!to!clients'!requests.!On!the!other!hand,!such!a!construction!does!not!fully!leverage!the!
available!storage!in!the!micro%cloud!federation.!The!notion!of!a!DistributedEnsembleCache!retains!
the!dependability!property!of!a!ReplicatedEnsembleCache,!while!allowing!data!to!be!replicated!
across!several,!but!not!all,!of!the!micro%clouds.!A!DistributedEnsembleCache!also!allows!using!explicit!
partitioning!and!placement!strategies!for!data,!and!to!improve!locality!of!accesses!in!some!scenarios.!
Similarly!to!a!ReplicatedEnsembleCache,!a!DistributedEnsembleCache!implements!a!BasicCache!API!
on!top!of!multiple!caches.!However,!in!this!case!the!underlying!caches!are!(i)!either!ReplicatedEn%
sembleCaches!or!RemoteCaches,!and!(ii)!at!construction!time!a!Partitioner!object!is!given!to!map!
keys!to!the!appropriate!caches.!!
!
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This!gives!us!the!following!constructor:!!
!

)public)DistributedEnsembleCache(String)name,))

)))))))))))))))))))))))))))))))))List<?)extends)EnsembleCache<K,)V>>)caches,))

)))))))))))))))))))))))))))))))))Partitioner<K,)V>)partitioner))

)

where!a!Partitioner!is!an!interface!exporting!the!following!method:!!
!
!! !public)abstract)EnsembleCache<K,V>)locate(K)k))

!
As!an!example,!the!ModuloPartitioner!implements!a!simple!modulo!operation!on!the!hash!value!of!k!
to!retrieve!the!EnsembleCache!that!should!store!the!content!indexed!by!key!k.!!
!
Frontier(Mode.!In!a!DistributedEnsembleCache,!put!and!get!operations!behave!as!usual.!This!means!
that!a!put(k,v))inserts!tuple!(k,v))in!the!EnsembleCache!E!returned!by!locate(k),!and!get(k)!operation!
returns!the!tuple!(k,v))stored!at!E.!When!a!DistributedEnsembleCache!operates!in!frontier!mode,!put!
operations!work!as!previously,!but!get()!operations!solely!returns!data!located!in!the!local!site.!As!we!
shall!illustrate!in!Section!7,!this!mode!allows!us!to!transparently!port!existing!applications!to!the!geo%
distributed!scale.!!
!

F31(Explicit(and(constrained(data(placement((federation)(
Core)contribution:!fine%tuned!data!placement!for!the!client%side.!
!
For!performance!reasons,!WP3!queries!must!access!data!items!that,!to!the!highest!extend,!should!be!
located!on!the!micro%cloud!executing!the!query.!We!call!this!requirement!data;to;query)affinity.)
Moreover,!data!items!likely!to!be!processed!together!have!to!be!close!geographically,!a!requirement!
that!we!define!as!data;to;data)affinity.!The!LEADS!storage!layer!is!aware!of!these!locality!constraints!
and!the!two%level!hierarchical!nature!of!the!platform!as,!

(1) services!developed!in!WP4!leverage!both!data%to%data!and!data%to%query!affinity!to!improve!
the!performance!of!the!LEADS!architecture,!and!!

(2) Ensemble!implements!an!explicit!and!constrained!data!placement!strategy.!
!!

In!Error!(Reference(source(not(found.,!we!illustrate!this!strategy!implemented!in!Ensemble.!At!the!
creation!of!an!EnsembleCache,!the!user!gives!an!explicit!set!of!Infinispan!instances!deployed!on!the!
micro%cloud!federation!that!are!backing!the!EnsembleCache.!For!instance,!the!green!cache!in!Error!(
Reference(source(not(found.!is!replicated!on!the!micro%clouds!1,!3!and!4.!Alternatively,!the!user!can!
provide!a!replication!degree!and!a!list!of!prohibited!micro%clouds!(e.g.,!as!the!stored!private!data!
may!not!be!in!a!region!under!a!particular!legislation).!Based!on!this!information,!EnsembleCacheM%
anager!compute!an!appropriate!set!of!backing!instances.!For!instance,!to!create!the!yellow!cache!in!
Error!(Reference(source(not(found.,!the!user!can!specify!a!replication!degree!of!3!and!bans!the!mi%
cro%clouds!1!and!2.!!
!
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Figure(4:(Illustration(of(the(data(placement(based(on(an(explicit(shared(index.(

!
In!the!current!state!of!our!prototype,!Ensemble!is!already!able!to!implement!a!constrained!and!in%
dexed!data!placement.!The!two!functionalities!are!available!through!either!a!Java!interface!or!a!REST!
API.((
REST(API(for(an(EnsembleCache.(The!proposed!interface!maps!all!EnsembleCacheManager!into!REST!
calls,!and!adds!for!convenience!two!simple!get()!and!put()!operations.!!The!data!format!in!use!is!
JSON.!We!give!examples!of!the!REST!API!in!Appendix!A.!
!

F32(Data(location(and(retrieval((federation)(
Core)contribution:!principled!distributed!service!partitioning!with!application!to!indexing!
!
Accesses!across!micro%clouds!should!be!rare.!This!imposes!that!the!location!and!retrieval!of!an!En%
sembleCache!is!executed!in!a!single!step.!Moreover,!the!explicit!index!is!at!core!of!the!Ensemble!ar%
chitecture,!and!thus,!it!should!be!shared!between!all!the!micro%clouds.!To!satisfy!both!requirements,!
Ensemble!stores!the!index!inside!a!globally,!strongly%consistent!shared!tree.!!
!
To!implement!this!index,!our!initial!choice!was!to!use!an!Apache!ZooKeeper!instance!that!spans!the!
micro%clouds!federation.!!ZooKeeper!is!an!effort!to!develop!and!maintain!an!open%source!server!
which!enables!highly!reliable!distributed!coordination![Zk10].!It!is!based!on!the!seminal!state!ma%
chine!replication!(SMR)!approach.!!By!replicating!the!shared!tree!on!multiple!servers,!ZooKeeper!op%
erations!are!wait%free!despite!failures,!and!by!executing!them!in!the!same!order!at!all!replicas,!they!
are!atomic!(a.k.a,!linearizable).!!
!
However,!it!is!well%known!that!this!last!strategy!has!a!performance!cost:!because!ZooKeeper!serializ%
es!all!commands,!it!does!not!leverage!the!intrinsic!parallelism!of!the!workload.!This!situation!is!even!
more!problematic!in!a!geo%distributed!setting!where!remote!accesses!are!necessary!even!for!shared!
data!which!are!only!accessed!locally.!!
!
Recently,!we!worked!on!a!scalable!solution!to!address!the!above!problem.!Our!solution,!to!be!pre%
sented!at!the!IEEE!SRDS!2014!conference!(see!Appendix!C),!consists!in!partitioning!the!shared!tree!
exposed!by!ZooKeeper![SRDSb].!!!
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With!more!details,!we!proposed!and!
formulated!specific!conditions!under!
which!any!distributed!service!is!parti;
tionable.!We!also!present!a!general!algo%
rithm!to!build!a!dependable!and!con%
sistent!partitioned!service,!and!!apply!it!
to!build!ZooFence.!ZooFence!is!a!coordi%
nation!service!which!mimics!ZooKeeper!
API.!Under!the!hood,!it!orchestrates!sev%
eral!instances!of!ZooKeeper!and!presents!
the!exact!same!API!and!semantics!to!its!
clients.!It!automatically!splits!the!shared!
tree!among!ZooKeeper!instances!while!
being!transparent!to!the!application.!By!
reducing!the!convoy!effect!on!operations!
and!leveraging!the!workload!locality,!this!
approach!allows!proposing!a!coordina%
tion!service!with!a!greater!scalability!
than!with!a!single!ZooKeeper!instance.!!
The!interested!reader!may!consult!Ap%
pendix!C!for!further!details.!
!
Next,!we!briefly!cover!an!example!empir%
ical!evaluation!that!illustrates!the!ob%
tained!results.!The!complete!paper!de%
scribing!this!work!is!available!in!the!Appendix!C.!
!
BookKeeper.(Figure!5!presents!a!detailed!performance!comparison!of!BookKeeper![BookKeeper],!a!
dependable!concurrent!logging!service,!when!using!ZooKeeper!and!ZooFence.!!We!vary!the!length!of!
a!log!entry,!from!128!to!2,048!bits,!and!the!number!of!entries,!from!100!to!1,000,!written!by!a!client!
before!it!switches!to!a!novel!log.!In!both!figures,!Zk!and!Zf!stands,!respectively,!for!ZooKeeper!and!
ZooFence.!The!throughput!is!measured!as!the!total!amount!of!operations!per!second.!When!clients!
write!1,000!entries!(or!more,!not!shown!on!these!plots),!the!two!systems!achieve!close!performance.!
In!such!a!case,!the!throughput!is!limited!by!either!the!storage!nodes!replicating!the!log,!or!the!net%
work.!During!our!experiments,!the!MTU!(maximal!packet!size)!is!set!to!1,500!bytes.!This!explains!the!
performance!gap!between!large!and!small!entries.!On!the!other!hand,!when!clients!create!concur%
rently!more!logs,!fast!operations!on!the!metadata!storage!matter.!In!such!a!case,!because!ZooFence!
provides!parallel!accesses!to!the!shared!tree,!it!outperforms!ZooKeeper.!The!difference!increases!as!
clients!access!new!logs!more!frequently.!In!our!experiments,!ZooFence!improves!the!throughput!of!
BookKeeper!by!up!to!45%.!
!

F22(Fault>tolerance(mechanisms((federation)(
Core)contribution:!mechanisms!to!sustain!micro%cloud!failures!
!
Avoiding!the!interruption!of!the!storage!service!is!a!paramount!property!of!the!LEADS!storage!layer.!
As!pointed!out!in!D2.2,!Infinispan!already!satisfies!this!guarantee!in!a!single!micro%cloud!thanks,!in!
particular,!to!the!JGroup!communication!library![JGroup].!At!the!federation!level,!implementing!this!

Figure(5:(BookKeeper(performance((from)left)to)right,)the)

amount)of)written)entries)is)100,)250,)500)and)1000))
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guarantee!requires!two!components:!!a!failure!detector!that!monitors!micro%clouds,!and!a!set!of!dis%
tributed!mechanisms!to!implement!a!(configurable)!policy!when!such!an!event!occurs.!These!two!
components!are!currently!under!development,!and!both!of!them!offer!challenging!research!prob%
lems.!We!briefly!cover!them!in!what!follows.!
!
Research(opportunity.!To!the!best!of!our!knowledge,!there!are!few!solutions!regarding!the!problem!
of!failures!detection!between!disjoint!groups!of!nodes!as!it!appears!in!the!context!of!the!micro%
clouds!federation.!Moreover,!we!note!that!responding!to!a!micro%cloud!failure!incurs!into!a!lot!of!
processing!to!reach!the!nominal!state!of!execution.!This!trade%off!between!the!response!time!to!such!
an!event!and!the!cost!of!the!recovery!process!is!a!challenging!direction!to!investigate.!!!!
!
Recall!that!the!state!of!Ensemble!consists!in!two!globally!shared!objects!backed!by!ZooFence.!Based!
on!this!design,!we!plan!to!implement!mechanisms!to!migrate!data!to/from!a!micro%cloud!as!event!
handlers!registered!on!the!global!shared!indexes.!For!instance,!when!a!micro%cloud!uc1!is!removed,!
an!event!is!triggered!at!every!other!micro%cloud.)Each)EnsembleCacheManager!then!searches!for!all!
the!caches!that!it!owns!which!relies!on!uc1,!and!starts!migrating!the!data.!Such!an!approach!is!remi%
niscent!of!the!live!object!paradigm!of!Birman!et!al.![LiveObj].!When!implementing!these!mechanisms,!
we!plan!contributing!to!the!Menagerie!library![menagerie],!an!open%source!project!that!supports!col%
lections!on!top!of!ZooKeeper!(and!thus!ZooFence).!
!

F23((Elasticity((federation)(
Core)contribution:!ability!to!add/remove!a!micro%cloud!in!the!federation!!
!
In!our!current!prototype,!Ensemble!clients!have!the!ability!to!add!and!remove!micro%clouds.!This!
mechanism!is!available!using!a!Java!API!or!using!the!REST!API!(see!Appendix!A).!Recall!that!at!the!
scale!of!a!single!micro%cloud,!Infinispan!is!elastic,!that!is!it!supports!the!on%the%fly!addition!or!remov%
al!of!a!node!to!the!system!without!any!service!disruption!(see!feature!C22).!As!a!consequence,!the!
additional!ability!of!Ensemble!to!add/remove!micro%cloud!on%the%fly!guarantees!full!elasticity!at!the!
federation!level.!Both!levels!of!elasticity!are!used!by!the!scheduler!implemented!in!WP4.!In!particu%
lar,!such!elastic!features!of!Ensemble!allow!the!scheduler!to!adapt!the!amount!of!machines!and!of!
micro%clouds!in!use!to!the!workload!changes,!by!dynamically!provisioning!and!de%provisioning!re%
sources!in!an!autonomous!manner,!such!that!at!each!point!in!time!the!available!resources!match!the!
current!demand!as!closely!as!possible.!
!
We!note!here!that!in!its!current!state,!our!prototype!still!lacks!a!mechanism!to!modify!on%the%fly!the!
replication!factor!and!the!composition!of!an!EnsembleCache.!These!mechanisms!are!the!same!as!the!
ones!required!to!sustain!the!failure!of!a!single!micro%cloud!as!discussed!above.!They!will!be!provided!
for!milestone!M30.!
!
F61(Versioning((federation)(
Core)contribution:!support!for!data!versioning!across!micro%clouds.!
!
Initially,!we!will!consider!that!support!for!versioned!data!at!the!federation!level!inherits!directly!from!
its!counterpart!at!the!single!micro%cloud!level.!From!an!pragmatic!point!of!view,!this!means!that!
when!a!versioned!datum!(k,u,v))with!value!u!and!version!v!is!put!in!either!a!replicated!or!a!distribut%
ed!EnsembleCache,!it!is!added!to!all!the!caches!that!supports!it.!!
!
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The!simple!aforementioned!implementation!requires!the!versioning!mechanism!to!be!aware!of!the!
geo%distributed!infrastructure.!For!instance,!if!this!mechanism!is!based!on!vector!clocks,!the!dimen%
sion!of!the!vector!must!be!equals!the!total!number!of!Infinispan!nodes!in!the!federation.!As!a!conse%
quence,!such!a!naïve!approach!might!be!expensive.!Consequently!in!a!second!step,!we!will!consider!a!
versioning!mechanism!that!takes!into!account!the!geo%distributed!aspect!of!the!LEADS!infrastructure.!
!

F71(Factory(of(atomic(objects((federation)(
Core)contribution:!powerful!abstraction!to!coordinate!geo%distributed!processes!!
!
Compare%and%swap2!is!a!core!building!block!to!implement!non%blocking!data!structures!and!opera%
tions.!In!particular,!it!is!well!known!that!any!atomic!object!can!be!implemented!on!top!of!a!compare%
and%swap!primitive![WaitFree].!!However!this!abstraction!is!not!part!of!the!standard!high%level!API!
commonly!used!via!the!message%passing!para%
digm.!More!typically,!distributed!systems!based!
on!the!message%passing!!paradigm!feature!a!
synchronization!service!that!replaces!it!(e.g.,!
Zookeeper!or!Google!Chubby![Chubby]).!!Such!a!
service!is!implemented!using!the!state!machine!
replication!approach![SMR],!and!relies!either!on!
a!central!sequencer,!or!the!Paxos!consensus!
algorithm![Paxos].!
!
Synchronization!services!are!not!efficient!at!
large%scale.!We!underlined!previously!that!this!
inefficiency!comes!from!the!fact!that!all!the!
modifications!go!through!a!leader!node!that!
orchestrates!the!service.!To!cope!with!this!prob%
lem,!we!propose!a!novel!design!and!implemen%
tation!of!the!compare%and%swap!primitive!on!
top!of!the!Cassandra!distributed!key%value!
store.!The!key!idea!is!to!leverage!the!fact!that!
concurrent!processes!access!distinct!objects!
with!high!probability.!In!such!a!situation,!we!
show!that!it!is!possible!to!implement!a!com%
pare%and%swap!primitive!in!a!fully!asynchronous!
and!distributed!manner,!while!providing!ato%
micity!and!strong!progress!guarantees.!In!what!
follows,!we!present!two!experimental!results!
that!assess!the!benefits!of!our!approach.!Ap%
pendix!D!contains!the!detail!of!this!work.!
!
Error!(Reference(source(not(found.!and!Error!(
Reference(source(not(found.!present!a!compar%
ison!of!our!approach!against!Zookeeper.!These!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!A!compare%and%swap!object!exposes!a!single!operation:!cas{u,v}.!This!operation!ensures!that!if!the!
old!value!of!the!object!equals!u,!it!is!replaced!by!v.!In!such!a!case!the!operation!returns!true;!other%
wise!it!returns!false.!

Figure(6:(Comparison(between(Zookeeper((
(bottom)(and(a(key>value(store(based(implemen>

tation((top)(of(a(critical(section(

Figure(7:(Scalability(of(a(key>value(store(based(im>
plementation(of(compare>and>swap(in(comparison(

to(Zookeeper(
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results!were!obtained!in!a!cluster!of!virtualized!Xeon!2.5!GHz!machines!running!Ubuntu!12.04!
GNU/Linux!and!connected!by!a!1Gbps!switched!network.!In!all!experiments,!a!set!of!clients!compete!
on!a!shared!object,!simulating!a!concurrent!workload.!Our!implementation!is!in!Python,!and!uses!the!
standard!interfaces!of!Zookeeper!and!Cassandra.!
!
In!Error!(Reference(source(not(found.,!we!evaluate!the!time!to!access!a!critical!section!when!multi%
ple!clients!compete!for!it.!This!bottom!line!shows!the!performance!results!of!Zookeeper!when!the!
critical!section!is!implemented!via!the!creation!of!a!znode!(an!elemental!node!and!coordination!ob%
ject!in!the!ZooKeeper!distributed!tree!abstraction).!The!upper!line!depicts!the!performance!of!a!
spinlock!object!implemented!on!top!of!our!distributed!compare%and%swap!primitive,!and!guarded!by!
an!exponential!back!off!mechanism.!In!Error!(Reference(source(not(found.,!the!inter%arrival!time!to!
the!critical!section!follows!a!Poisson!distribution.!This!experiment!shows!that!when!little!contention!
occurs,!the!performance!of!our!key%value!store!based!implementation!and!Zookeeper!are!close.!
Nevertheless,!when!the!number!of!clients!concurrently!accessing!the!critical!section!increases,!
Zookeeper!can!be!up!to!three!times!faster.!This!performance!difference!is!the!price!to!pay!to!have!no)
centralization)point)in)the)system.!
!
On!the!other!hand,!having!no!execution!bottleneck!pays!off!when!concurrent!clients!access!disjoint!
objects.!In!Error!(Reference(source(not(found.,!we!present!the!scalability!factor!of!our!approach!in!
comparison!to!Zookeeper.!These!results!were!obtained!when!clients!access!distinct!compare%and%
swap!objects!with!high!probability.!The!results!for!Zookeeper!are!reported!for!3!servers.!Using!3!
servers!is!necessary!to!tolerate!the!failure!of!a!single!one,!and!using!more!servers!can!only!decrease!
the!throughput!for!write!operations.!With!3!servers,!our!system!delivers!18.4K!op/s!,!whereas!
ZooKeeper!!only!delivers!12.6K!op/s.!This!gab!is!explained!by!the!bottleneck!nature!of!the!ZooKeeper!
leader!which!serializes!all!updates.!Our!prototype!achieves!33K!op/s!when!using!9!servers,!and!40K!
op/s!with!12.!In!this!last!case,!our!system!is!3.2!times!faster!than!Zookeeper!on!3!machines.!
!
Our!preliminary!results!are!promising.!They!show!that!one!can!implement!a!strong!synchronization!
primitive!on!top!of!an!off%the%shelf!key%value!store,!and!thus!avoid!a!bottleneck!in!the!system!where!
all!synchronization!calls!are!serialized.!During!the!M25%M30!period,!we!plan!to!further!assess!them!in!
a!geo%distributed!context.!!
!
F101(Support(for(deployment(and(configuration((federation)(
Core)contribution:!tools!to!deploy!LEADS!storage!across!multiple!micro%clouds.!
!
Configuring!and!deploying!a!distributed!service!on!top!of!an!IaaS!(Infrastructure%as%a%service)!is!a!
complex!administrative!task.!Not!only!does!it!require!a!fine!knowledge!of!the!underlying!IaaS!which!
executes!the!VMs,!but!it!also!necessitates!a!partly!automated!procedure!to!avoid,!at!most,!repetitive!
operations.!!
!
Feature!C101!(partly!described!in!D2.2)!a!toolkit!to!easily!deploy!and!configure!a!distributed!service!
in!a!micro%cloud!running!OpenNebula.!This!toolkit!has!been!extended!to!support!OpenStack!which!is!
the!IaaS!running!on!Cloud&Heat!micro%clouds.!Furthermore,!the!toolkit!gives!now!access!to!two!ad%
ditional!services:!ZooKeeper!and!BookKeeper,!besides!the!existing!Infinispan!and!Cassandra!support.!
We!also!provide!a!set!of!scripts!to!emulate!a!micro%cloud!federation.!This!emulation!makes!use!of!
the!Linux!traffic!shaping!tools![TC]!and!it!can!constrain!both!the!latency!and!the!bandwidth!between!
several!configurable!sets!of!VMs.!
!
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In!the!section!that!follows,!we!present!several!experiments!that!demonstrate!the!capabilities!of!En%
semble!and!evaluate!its!performance.!We!run!these!experiments!in!a!controlled!environment!by!em%
ulating!a!federation!of!micro%clouds!as!described!above.!
! (
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5. Evaluation(
In!this!section,!we!present!several!experimental!results!conducted!in!a!cluster!of!virtualized!dual%core!
machines!with!2GB!of!memory!and!communicating!through!a!Gigabit!network.!In!these!experiments,!
we!emulate!a!micro%cloud!federation!that!consists!of!3!micro%clouds.!Each!micro%cloud!runs!3!Infin%
ispan!machines!in!distributed!mode!and!it!uses!of!a!Murmur3%based!consistent!hashing!to!locate!da%
ta.!Inside!a!micro%cloud,!the!replication!factor!is!set!to!1,!i.e.,!a!single!Infinispan!machine!holds!each!
data!item.!At!the!federation!scale,!depend%
ing!on!the!experiments!it!varies!between!1!
and!3.!!
!
During!our!experiments,!we!use!the!Yahoo!
Cloud!Serving!Benchmark!(YCSB)!for!which!
we!implemented!an!Ensemble!binding.!
YCSB!is!a!framework!with!the!goal!of!facili%
tating!performance!comparisons!of!the!
new!generation!of!cloud!data!serving!sys%
tems.!In!this!benchmark,!a!client!machine!
emulates!multiple!clients!that!access!a!
cloud!data!storage!service.!The!access!pat%
tern!varies!according!to!(i)!the!amount!of!
object!stored,!(ii)!the!amount!of!operations!
executed!in!total!by!the!clients,!and!(iii)!the!
nature!of!this!workload,!i.e.,!the!read/write!
ratio!and!the!object!popularity!distribution.!
!
We!evaluate!the!performance!of!Ensemble!
when!executing!various!workloads.!We!vary!
the!number!of!clients,!the!replication!fac%
tor,!the!latency!between!micro%clouds!and!
the!consistency!degree!of!the!exposed!
cache.!Note!here!that!when!Ensemble!exposes!a!weakly!consistent!cache!and!the!replication!factor!
across!micro%clouds!equals!1,!the!system!demonstrates!performance!of!an!Infinispan!deployment!in!
a!single!micro%cloud.!
!
During!an!experiment,!each!client!executes!around!105!operations!over!105!data!items.!By!default,!
the!YCSB!benchmark!truncates!results!in!order!to!obtain!a!95%!confidence!interval.!In!all!our!experi%
ments,!the!client!machine!was!not!a!bottleneck.!
!
Flat(evaluation.(Our!first!set!of!experiments!compares!the!different!consistency!degrees!available!in!
Ensemble!in!a!basic!configuration,!that!is,!when!(i)!all!the!communication!is!flat,!i.e.,!inside!and!be%
tween!micro%clouds!it!relies!on!the!underlying!Gigabit!network,!and!(ii)!a!single!client!accesses!En%
semble.!Such!an!experimental!setting!offers!minimal!noise!and!aims!at!comparing!the!algorithmic!
structures!of!the!3!designs.!!
!
Figure!8!reports!the!latency!of!a!client!operation!when!executing!a!single!type!of!operation:!in!Figure!
3(top),!only!read!operations,!and!conversely!in!Figure!3(bottom),!only!write!operations.!The!replica%
tion!factor!of!the!cache!varies,!and!is!set!to!respectively!1,!2!and!3!from!left!to!right.!!!
!

Figure(8:(Impact(of(consistency(in(Ensemble)(top)read)
operations,)bot)write)operations,)rep.)factor)varies)left)to)

right)from)1)to)3)(
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In!Figure!8(top),!we!observe!that!the!performance!of!eventual!consistency!and!primary!replication!
are!close.!This!comes!from!the!fact!that!in!both!cases,!the!client!accesses!a!single!remote!cache!to!
execute!an!operation.!On!the!contrary,!in!a!quorum%based!implementation,!a!read!first!retrieves!the!
latest!version!of!the!key!from!a!quorum!of!replicas!then!it!writes!this!value!back!to!ensure!the!con%
sistency!of!posterior!reads.!When!the!cache!is!replicated,!this!incurs!a!large!performance!penalty!
over!the!two!other!implementations.!
!
Figure!8(bottom)!indicates!that!for!every!consistency!criteria,!replicating!a!cache!across!several!mi%
cro%clouds!induces!a!performance!cost.!As!all!the!put!operations!are!asynchronous,!this!cost!is!small!
when!the!EnsembleCache!is!eventually!consistent.!On!the!contrary,!in!a!primary%replica!based!im%
plementation,!the!cost!is!higher!since!the!first!write!has!to!be!synchronous!before!accessing!the!oth%
er!replicas.!When!the!client!uses!a!quorum!of!remote!caches!to!maintain!consistency,!the!critical!
path!of!a!write!operation!is!the!same!as!in!the!case!of!a!read!operation,!i.e.,!two!round!trips.!Never%
theless,!because!these!operations!are!executed!in!parallel,!they!can!be!faster!than!a!primary%based!
implementation.!!
!
Performance(of(Ensemble.(!In!the!following!set!of!experiments,!we!consider!that!micro%clouds!are!
linked!by!a!network!offering!a!latency!of!15ms!and!a!bandwidth!of!10Mb/s.!!The!client!machine!is!in!
one!of!the!three!geographical!locations,!thus!it!is!local!to!one!of!the!Infinispan!instances.!This!setting!
corresponds!to!a!deployment!of!the!LEADS!infrastructure!spanning!a!small!geographical!region.!We!
sum%up!it!below!where!the!underlined!IP!address!corresponds!to!the!client.!
!

UCloud)1)=)(192.168.79.107)192.168.79.108)192.168.79.109)192.168.79.117))

UCloud)2)=)(192.168.79.111)192.168.79.112)192.168.79.113))

UCloud)3)=)(192.168.79.114)192.168.79.115)192.168.79.116)!
!
During!these!experiments,!we!evaluate!two!types!of!YCSB!workloads:!

% Workload!A:!an!update%heavy!workload,!where!half!of!the!operations!are!writes!and!the!dis%
tribution!is!uniform;!and!!

% Workload!B:!a!read%heavy!workload,!characterized!by!a!set!of!95%!of!read!operations!and!
where!the!accesses!follow!a!zipfian!(skewed)!distribution.!

The!first!workload!corresponds!to!a!use!case!where!clients!attach!private!information!to!public!data!
and!later!retrieve!them.!The!second!workload!models!query!intensive!operations!to!compute!various!
metrics!on!stored!data!(e.g.,!PageRank).!!
!
!
!
!
!
!
!
!
In!Figure!9,!we!report!the!maximal!performance!of!Ensemble!for!the!two!workloads,!varying!the!con%
sistency!of!the!EnsembleCache!that!supports!the!operations.!The!replication!degree!is!set!to!2!in!the!
first!workload;!this!corresponds!to!a!setting!where!private!data!is!replicated!for!durability.!In!the!se%
cond!workload,!the!replication!degree!is!set!to!3.!Such!a!setting!models!that!public!data!is!locally!
available!in!the!micro%cloud!before!the!computation!starts.!!!
!

( EVEN( QUOR( PRIM(

Workload(A( 7618( 363( 5439(

Workload(B( 9641( 497( 8361(

Figure(9(–(YCSB(Performance(of(Ensemble((in!ops/sec)(
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We!observe!in!Figure!9!that!there!exists!one!order!of!magnitude!between!the!maximal!throughput!of!
the!quorum%based!implementation!and!the!two!other!implementations.!Such!a!large!difference!is!
explained!by!the!fact!that!none!of!the!operation!in!this!case!is!local!to!the!micro%cloud!where!the!
client!executes.!On!the!contrary,!for!the!two!other!modes,!the!operations!are!largely!executed!locally!
before!they!reach!the!other!micro%clouds.!When!the!consistency!level!of!Ensemble!is!set!to!eventual!
consistency,!these!operations!are!all!executed!asynchronously!in!the!background.!This!explains!that!
the!system!is!in!that!case!faster!than!when!it!relies!on!a!primary!replication!schema.!When!the!load!is!
composed!mostly!of!read!operations!(Workload!B),!the!price!to!pay!in!order!to!obtain!consistent!ac%
cess!is!nevertheless!reasonable!(around15%).!

( (
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6. Conclusion(
The!present!document!is!the!deliverable!D2.4!of!the!LEADS!project.!This!deliverable!presents!an!
overview!of!the!current!state!of!the!storage!layer!at!M24.!This!layer!consists!in!a!key%value!store!with!
extended!capabilities!to!support!a!federation!of!micro%clouds.!In!this!document,!we!first!recall!the!
architecture!targeted!in!LEADS,!as!well!as!the!use!cases!of!the!storage!layer!by!higher!tiers!of!the!pro%
ject!(WP3!and!WP4).!Then,!we!list!the!key!features!that!are!currently!available!in!the!storage!layer!
and!present!the!additions!we!made!in!comparison!to!D2.2.!In!particular,!we!detail!the!key/value!API!
at!the!federation!level,!the!implementation!of!the!explicit!data!placement!and!retrieval,!the!multi%
version!support!and!the!state!of!our!toolkit!for!deployment!and!configuration!of!the!storage!layer.!
Further,!we!present!several!experiments!in!an!emulated!environment!that!evaluate!the!performance!
of!our!prototype.!!!
!
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Below,!we!provide!several!examples!of!the!REST!API!to!access!Ensemble.(
!

% Register!a!site!
Call!format!

POST!/sites!HTTP/1.1!
Accept:!application/json!
Content%Type:!application/json!
Content%Length:!<size>!
{!
!!!!"name"!:!<site!name>,!
!!!!"endpoints"!:![!<URL1>,!<URL2>,!...,!<URLn>!]!
}!

Arguments!!!
Parameter!name!specifies!the!name!of!the!site!to!be!registered.!If!not!speci%
fied,!a!string!based!on!the!first!endpoint's!URL!is!used.!Parameter!endpoints!
specifies!the!Hotrod!communication!endpoints!to!reach!the!site.!At!least!one!
endpoint!must!be!specified.!

Return!format!
HTTP/1.1!200!OK!
Content%Type:!application/json!
Content%Length:!<size>!
{!
!!!!"name"!:!<site!name>,!
!!!!"endpoints"!:![!<URL1>,!<URL2>,!...,!<URLn>!]!
}!

!
% Inspect!site!registration!/!fields!

Call!format!!
GET!/sites/<site!name>!HTTP/1.1!
Accept:!application/json!

Comment!
The!return!format!is!the!same!as!for!registering!the!site.!!

!
% Create!an!ensemble!cache!

Call!format!(for!ReplicatedEnsembleCache)!
POST!/caches!HTTP/1.1!
Accept:!application/json!
Content%Type:!application/json!
Content%Length:!<size>!
{!
!!!!"name"!:!<new!cache!name>,!
!!!!"replication"!:!<replication!factor>,!
!!!!"consistency"!:!<consistency!level>,!
!!!!"sites"!:![!<site1>,!<site2>,!...,!<siteN>!]!
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}!
Arguments!!

All!arguments!are!optional.!!Parameter!name!specifies!the!name!of!the!cache!
to!be!created.!By!default,!a!unique!random!name!is!generated.!Parameter!
replication!specifies!the!number!of!sites!(micro%clouds)!to!use!to!fully!repli%
cate.!By!default,!one!site!is!used.!Parameter!consistency!specifies!the!con%
sistency!level!of!the!created!cache.!Possible!values!are:!SWMR,!linearizability!
with!a!single!writer!and!multiple!readers,!MWMR,!linearizability!with!a!mul%
tiple!writers!and!multiple!readers,!WEAK,!no!consistency,!being!this!the!de%
fault!value.!Finally,!parameter!sites!explicitly!specifies!the!names!of!the!sites!
to!use!for!replication.!By!default,!a!random!selection!is!used.!

Return!format!
HTTP/1.1!200!OK!
Content%Type:!application/json!
Content%Length:!<size>!
{!
!!!!"name"!:!<new!cache!name>,!
!!!!"replication"!:!<replication!factor>,!
!!!!"consistency"!:!<consistency!level>,!
!!!!"sites"!:![!<site1>,!<site2>,!...,!<siteN>!]!
}!

Comment!
All!the!actual!values!used!in!the!cache!description!fields!!
are!returned!to!the!caller.!!

Call!format!(for!DistributedEnsembleCache)!
POST!/caches!HTTP/1.1!
Accept:!application/json!
Content%Type:!application/json!
Content%Length:!<size>!
{!
!!!!"name"!:!<new!cache!name>,!
!!!!"caches"!:![!<cache1>,!<cache2>,!...,!<cacheN>!]!
!!!!"partitioner"!:!{!
!!!!!!!!"url"!:!<partitioner!URL>,!
!!!!!!!!"parameters"!:!{!!
!!!!!!!!!!!!<parameter1>,!
!!!!!!!!!!!!<parameter2>,!
!!!!!!!!!!!!...,!
!!!!!!!!!!!!<parameterN>!
!!!!!!!!}}}!

! Arguments!
Parameter!name!specifies!the!name!of!the!cache!to!be!created.!It!is!optional,!
and!by!default,!a!unique!random!name!is!generated.!Parameter!caches!speci%
fies!the!names!of!the!caches!that!compose!the!collection.!Parameter!parti;
tioner!defines!an!object!that!splits!the!key!space!into!partitions!(in!other!
words,!it!maps!every!possible!key!to!one!of!the!given!caches!in!the!collec%
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tion).!It!is!defined!by!an!URL!(usually!a!class!in!the!server!class!path)!and!a!
number!of!parameter!passed!to!the!object!constructor.!

Comment!!
Several!standard!partitioners!are!provided.!For!instance,!the!uniform!parti%
tionner!takes!as!input!a!list!of!micro%clouds!and!a!regular!expression.!It!en%
sures!that!each!micro%cloud!holds!an!equal!share!of!the!keys!satisfying!the!
expression.!
!
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Abstract—The ability to access and query data stored in
multiple versions is an important asset for many applications,
such as Web graph analysis, collaborative editing platforms,
data forensics, or correlation mining. The storage and retrieval
of versioned data requires a specific API and support from
the storage layer. The choice of the data structures used to
maintain versioned data has a fundamental impact on the
performance of insertions and queries. The appropriate data
structure also depends on the nature of the versioned data
and the nature of the access patterns. In this paper we study
the design and implementation space for providing versioning
support on top of a distributed key-value store (KVS). We
define an API for versioned data access supporting multiple
writers and show that a plain KVS does not offer the necessary
synchronization power for implementing this API. We leverage
the support for listeners at the KVS level and propose a
general construction for implementing arbitrary types of data
structures for storing and querying versioned data. We explore
the design space of versioned data storage ranging from a flat
data structure to a distributed sharded index. The resulting
system, ALEPH, is implemented on top of an industrial-grade
open-source KVS, Infinispan. Our evaluation, based on real-
world Wikipedia access logs, studies the performance of each
versioning mechanisms in terms of load balancing, latency and
storage overhead in the context of different access scenarios.

Keywords-versioning, key-value store, listeners.

I. INTRODUCTION

Applications processing massive amounts of data favor
storage on key-value stores (KVSs) over traditional relational
databases for their much better scalability. Some of these
applications are based on a computational model that consid-
ers the evolution of data over time, in the form of versioned
data. We consider the following motivating examples.

Business intelligence extraction can be performed on
periodic crawls of the Web graph. Such analysis may consider
the evolution of mentions of products and other assets on Web
pages, analyze trends, track the origin of data and rumors, or
try to determine Web influencers. These are made possible
by storing for each page, the different versions obtained with
successive crawls.

Collective and collaborative editing platforms such as
Wikipedia naturally deal with, and give access to, versioned
data. Most reads are for the latest version of a given page. The
ability to access previous versions is nonetheless required by
the access model, in order to be able to compare versions and

restore content that has been deleted by mistake. The ability
to access previous versions also allows mining complex
information from past states of a wiki, e.g., to detect trends
in vocabulary usage.

Other examples of applications that directly rely on
versioned data include log mining, forensics and generally
data mining for large sets of unstructured data where versions
of the data for time windows in the past are considered. Web
content based on a timeline-dependent set of information,
such as blogs and Twitter streams archives, also form
naturally versioned data.

For each of our motivating applications, the data store
must not only store and expose the latest version of the
data associated with a given key but a very large number of
versions may exist for each key, which must be persistently
stored by the versioned KVS. An order relation - given by
the semantics of the application - between these identifiers
allow operations based on versions ranges.

In this paper we are interested in the case where versioning
support is explicitly part of the data model and exposed by
the API of the KVS. We name such a KVS a versioned KVS.
We consider more specifically the construction of multiple-
writer versioned KVS, where several clients may write new
versions to any given key concurrently. This choice is driven
by our motivated examples, where updates may come from
multiple concurrent and un-synchronized clients.

We note that, for concurrency control, distributed KVSs
already associate version numbers to updated values of
the same key. These versions are used internally. At any
given time, a small number of them may exist for each key.
KVSs offering weak consistency models such as eventual
consistency may expose these versions to the applications
upon reads, to let the application reconcile multiple unordered
updates. These small set of co-existent values for a given
key are temporary in nature and do not correspond to
our requirement of storing large sets of versions in a
persistent and long-lived manner. The notion of versions
exposed in the data model is actually independent of the
notion of versions used for concurrency control. The two
mechanisms can actually co-exist. In an eventually-consistent
versioned KVS, a particular version might temporarily be
associated with several values, and exposed to the application
for reconciliation upon a read. This paper only considers



versioned KVSs offering strong consistency support.
There are several design options available for implementing

a versioned KVS. These options differ in the level at which
versioning is implemented. The KVS can be oblivious to
versioning, and the logic of maintaining multiple versions
for a key can be handled by the clients. The implementation
can also be integrated in the KVS itself, either by means of
objects exposing the versioning semantics on a single node,
or by means of explicit indexes stored in the KVS which
is then aware of the access semantics. Cost and interest of
these various solutions differ depending on the number of
versions per key, the size of the objects, the number of keys,
the access pattern (mostly read, mostly writes, read/write),
and the nature of these accesses (for example, whether most
accesses are to the latest version or not, whether appends
happen at the tail or not, or even if accesses to ranges of
versions dominate).

A. Contributions

In this paper, we explore the design options available for
building a versioned KVS on top of an existing KVS. To
support versioning, the implementation needs to maintain
specific data structures. In some of our designs, the KVS
needs to be aware of the semantics of these structures. Our
first contribution is to prove that a KVS API providing
solely put() and get() operations does not have the necessary
synchronization power to implement multi-writer versioning.
Our second contribution is to describe the construction of
atomic objects of any type on top of a KVS enriched with
support for listeners. Our third contribution is ALEPH, a
generic versioning system atop such a listenable KVS. Our
final contribution is to perform a thorough evaluation of
ALEPH under a real workload from Wikipedia access traces.
The evaluation highlights the inherent tradeoffs of each
implementation, from atomic maps to tree-based and sharded
tree-based indexes, and the specific adequacy to different
workload patterns.

B. Outline

The remainder of this paper is organized as follows.
Section II reviews related work and the support of versioning
in existing KVSs. In Section III, we define an API for a
versioned KVS and prove, in Section IV, that a plain KVS
is not sufficient to implement a multi-writer versioned KVS.
We then define the notion of a listenable KVS, upon which
we build a universal construction. We describe our different
alternative implementations of versioning in Section V. In
Section VI, we evaluation ALEPH and discuss the results.
Section VII concludes the paper.

II. RELATED WORK

This paper addresses the ability to access and query data
with a potentially very large number of versions that may
exist for a long time. In particular, we are interested in explicit

support for versions and mechanisms to retrieve ranges of
versions, including the latest one.

Temporal databases [9–11] provide specific support for
storing, querying, and updating historical data. Commercial
database management systems (DBMSs), such as IBM DB
10, Oracle Database 11g and Teradata, recently introduced
temporal-database features in the form of SQL extensions,
based on SQL:2011 [12]. According to the SQL:2011
standard, a table can be an application-time period table,
a system-versioned table, or both [11]. Application-time
period tables are useful to capture periods where data is valid.
System-versioned tables are useful to maintain an accurate
history of data changes and thus is similar to the multi-
version support we target in this paper. Queries on system-
versioned tables retrieve the table content at a given times-
tamp, (e.g: FOR SYSTEM_TIME AS OF TIMESTAMP t), or
between a range of timestamps, (e.g: FOR SYSTEM_TIME

BETWEEN TIMESTAMP t1 AND TIMESTAMP t2). System-
versioned tables are highly coupled to relational databases,
where timing information is added as metadata to tables, and
requires deep modifications to an existing DBMSs.

Most distributed KVSs lack any support for long-lived
versioned values, while others only offer limited multiple-
versions support. Table I presents a brief comparison of
versioning support in several popular KVSs.

KVSs using multi-version concurrency control
(MVCC) [13] usually associate version numbers to
data, typically using timestamps or version vectors [14].
However, versions are used internally, and applications have
no access to the full history of an object. Loosely consistent
KVSs may even expose at any given time a small number
of versions to the applications, so they are able to reconcile
with multiple updates.

Cassandra [1] columns have timestamps used for conflict
resolution and relies on the Last-Writer-Wins (LWW) ap-
proach [15]. Dynamo and Riak are loosely consistent KVSs
and may expose concurrent versions to the application. The
put() operation of Dynamo [7] receives a version; the get()
operation optionally returns a list of objects with conflicting
versions. A read operation in Riak [2] by default returns
the most recent version, using vector clocks: clients need to
resolve conflicts when needed.

MongoDB [4] is a document database without any built-
in support for multi-version. Mongo MVCC [5] offers
MVCC atop MongoDB but in contrast to most MVCC
implementations it keeps a complete history of old data,
enabling access to older versions of all documents at any time.
Mongo MVCC uses the principles from distributed version
control systems, such as Git, allowing the creation of branches
containing different versions of documents. Mongo MVCC
by default hides old versions of documents: users can recover
them using their unique identifier (the commit’s ID).

Apache HBase [6] is a distributed KVS with a versioned
data model and architecture inspired by BigTable [16]. In



Name Historic versions Multi-Versioning Support Technique
Cassandra [1] No Columns have timestamps that are used for conflict resolution.
Riak [2] No Use vector-clocks by default. Can be disabled and fall back to timestamps based on LWW.
CouchBase and CouchDB [3] No MVCC. Conflicts must be solved by the application. Old versions are discarded upon file-

compactation operations.
MongoDB [4] Yes, with MVCC [5] Support for versioned branches.
HBase [6] Yes TTL associated with each revisions. Upon expiration, row is trashed.
Dynamo [7] No Timestamps and eventual consistency based on LWW.
HyberTable [8] Yes Configurable number of managed versions, stored in reverse-chhronological order. Query predicates

can filter versions.

Table I
CLASSIFICATION OF KVSS AND THEIR SUPPORT TO LONG-TERM DATA VERSIONING. LWW=LAST-WRITER-WINS, MVCC=MULTI-VERSION

CONCURRENCY CONTROL

HBase, the maximum number of versions can be defined
per table and versions are stored in descending order. Read
operations, get() and scan(), can specify the quantity or the
range of versions to be retrieved. HyperTable [8], another
Bigtable’s clone, never discards old versions.

Most KVSs lack proper long-term versioning support,
including an API to access sorted ranges of versions. In
the remainder of this paper we study the design space for
versioning support on top of unmodified distributed KVS, and
we propose a framework based on universal atomic objects
to maintain the data structures needed for versioning.

III. VERSIONED KEY-VALUE STORE

This section defines the notion of versioned data and
the interface of a versioned KVS. Accesses to such a data
store are made through the put() and get() operations of
a plain KVS extended with capabilities for a client to
retrieve past versions. Below, we also list a set of desirable
properties for a versioned KVS that serve as guidelines in
our implementation.

A. Notion of Versioned Data

We are interested in any type of versioned data that might
be stored in a KVS. To model this, we consider three abstract
sets: a set of keys K, each key identifying a datum, a set
of values U , and a set of versions V . A tuple (k, u, v) 2
K ⇥ U ⇥ V is called a versioned datum.

Clients of the data store create versioned data, e.g.,
(k1, u1, v1) and (k2, u2, v2) along time. To capture this, we
assume the existence of a version order < such that (V, <)
is a bounded join-semilattice, i.e., a partially ordered set
ensuring that(i) given any two elements v, v

0 2 V , the least
upper bound, or join, of v and v

0 is in V , and (ii) V contains
some smallest element v0, named the initial version.

Numerous instances of the above abstraction (V, <) have
been proposed in the past. These include timestamps [14],
vector clocks [17], version vectors [18, 19], or more re-
cently, version vectors with exception [20] and interval tree
clocks [21]. Depending on how concurrency is tracked and
for which purposes, the dimension of V may vary from a

Algorithm 1 Versioned KVS Interface
1: put(k : K, u : U)
2: post: let v = t{(k, , v

0) 2 S}
3: S  S [ (k, u, v)
4:
5: put(k : K, u : U , v : V)
6: pre: 8(k, , v

0) 2 S : v0 < v

7: post: S  S [ (k, u, v)
8:
9: get(k : K)! u : U

10: pre: (k, u, v) 2 S ^ 8(k, , v

0) 2 S : ¬ (v0 > v)
11:
12: get(k : K, v : V)! u : U
13: post: ( , u, v) 2 S

14:
15: getRange(k : K, v1 : V, v2 : V)! R : 2U⇥V

16: pre: v1 < v2

17: post: R = {(u, v) | (k, u, v) 2 S ^ v1  v  v2}
18:
19: getSuccessor(k : K, v1 : V)! (u, v) : U ⇥ V
20: pre: (u, v) 2 S ^ v < v1 ^ 8(k, , v

0) 2 S : ¬ (v0 < v)
21:
22: getPredecessor(k : K, v1 : V)! (u, v) : U ⇥ V
23: pre: (u, v) 2 S ^ v > v1 ^ 8(k, , v

0) 2 S : ¬ (v0 > v)
24:

single dimension to the size of the data set (K in our case),
the number of storage nodes, or even the number of clients.

B. Versioned KVS: API Definition
A versioned KVS consists in a set of storage nodes that

offer an API to its clients to access versioned data. Clients can
add a new datum, add a new version of it, retrieve a specific
version, or retrieve a range of values spanning a range of
versions. We consider that a versioned KVS is an automata
whose initial state S consists in an empty set of versioned
data. Algorithm 1 details the semantics of the interface that
clients employ to access the store. This interface defines the
following set of operations:

- put(k, u) adds (k, u, v) to the store, where v is the least
upper bound (denoted t) of all existing versions of k;

- put(k, u, v) adds the versioned datum (k, u, v);
- get(k) returns (any of) the latest value stored at key k;



- get(k, v) returns the value of key k stored at version v;
- getRange(k, v1, v2) returns all data versions at key k

whose versions falls into the range [v1, v2];
- getPredecessor(k, v1) returns (any of) the latest ver-

sioned datum whose version is lower than v1; and
- getSuccessor(k, v1) returns (any of) the earliest ver-

sioned datum whose version is greater than v1.
As pointed out in Table I, existing KVSs offer some

features to support versioning. They implement all or part
of the interface described in Algorithm 1. Consistency of
this interface varies from one store to another. Cassandra [1]
exposes put(k, u, v) and get(k, v) operations using times-
tamps provided by clients; this interface is either sequential
or eventual consistency. The clients of Riak [2] can use
version vectors and dotted version vectors to track changes.
In both cases, versions are only exposed to reconcile storage
nodes that replicate the same datum at the application level.
INFINISPAN [22] does not offer built-in support for data
versioning. However, like in many others KVSs, its data
model supports secondary indexes and clients may execute
range queries on them.

C. Design objectives
Clients of different KVSs have different capabilities and

guarantees when querying and retrieving versioned data. Nev-
ertheless, a careful examination of existing versioned KVSs
reveals a set of common properties that any implementation
should offer. Below, we list these essential properties.
(Progress) Clients of different applications may concurrently

access the same KVS. As a consequence, we require
that calls to the interface are wait-free, i.e., they return
after some bounded amount of time regardless of what
the other clients do.

(Multi-writer) The versioned KVS should allow multiple
writers to insert different versions of a datum concur-
rently.

(Scalability) A versioned KVS should support a large num-
ber of versions.

(Performance) The time complexity of any operation of the
interface should be sublinear in the number of stored
versions.

(Load-balancing) The amount of versions of some datum
on the storage nodes should be as balanced as possible
even when the distribution of versions per key is highly
skewed.

These properties serve as design objectives for the different
versioned KVS implementations detailed in Section V. We
shall also use them in our empirical comparison in Section VI.

Consider a naive versioning mechanism where all the
versions of a datum indexed by k are stored as a blob under
key k, retrieved as such, updated locally and re-submitted to
the KVS. This mechanism is not appropriate as(i) it does not
offer any load balancing. (ii) the more versions it stores, the
more it is expensive, and (iii) it does not support concurrent

writters - if two versions are written concurrently, one of them
might be lost. These osbervations examplify the importance
of the properties we defined above. In the next section, we
further refines them by characterizing the synchronization
power of a versioned KVS.

IV. UNIVERSAL CONSTRUCTION ON A LISTENABLE KVS

After defining the versioned store API in the previous
section, we now explore whether a plain KVS can implement
this interface or if additional mechanisms are required. This
question is of practical importance as it allows determining
the nature and complexity of the mechanisms required to
support data versioning. We contribute an impossibility result:
the construction of a versioned store on top of a plain KVS
is impossible as it requires a synchronization power strictly
greater than what a plain KVS allows. Then, we present an
augmentation of a plain KVS that overcomes this limitation,
in the form of a listenable data store with the ability for
clients to follow the modifications occurring on the store
through remotely registered listeners. Finally, we describe
how the properties of a listenable store can be used to propose
a universal construction that allows building any strongly-
consistent shared object on top of it. We use this universal
construction to build and maintain versioning information
with various data structures in Section V.

A. The Separation Result
We start by showing that it is impossible to build a

versioned store on top of a plain KVS. To that end, we first
prove that a strongly-consistent wait-free versioned KVS can
solve consensus for any number of participants, i.e., that the
consensus power of the interface described in Algorithm 1 is
infinite. Then, we show that the consensus power of a plain
KVS is one, leading to a separation result.

Let us first recall that in consensus, processes propose
values and must reach agreement on one of them. More
precisely, consensus is defined by the propose() operation
which takes as input a proposed value and returns some
decision. Every run of consensus satisfies the following
properties. (Termination) Every correct process eventually
decides some value. (Integrity) Every process decides at most
once. (Validity) If a process decides v, then v was proposed
by some process. (Agreement) Two processes can’t decide
differently. The consensus power of a shared object o is the
maximum amount of processes that may solve consensus
with atomic and wait-free shared objects of the same type
than o and registers. Herlihy [23] shows that this hierarchy
is strict for shared objects, in the sense that if object o has
a consensus power of n, it cannot implement consensus for
n+ 1 processes.

Theorem 1: If (V, <) is a totally ordered set then the
consensus power of the versioned store interface is infinite.

Proof: We consider an asynchronous system of n

processes {pi, . . . , pn}, and for each process pi2J1,nK, we



note ui the value proposed by pi. Let k be some key. Every
process pi executes the following code to solve consensus:
Upon a call to propose(ui), process pi executes put(k, ui).
Then, it fetches the content of getSuccessor(k, v0) in the
pair (u, v) and decides the value stored in u.

Consider some history h of the above algorithm, and
note l the linearization of the calls to put(k, ui) and
getSuccessor(k, v0) that appear in h. First, we observe that
the value returned by getSuccessor(k, v0) is necessarily
proposed by one of the participating processes, and that
every process decides at most once. This proves that our
algorithm ensures the Validity and Integrity clauses of
consensus. Then„ for any process pi, a call to put(k, ui)
appears before getSuccessor(k, v0). As a consequence, the
precondition of getSuccessor(k, v0) holds and every call
getSuccessor(k, v0) by some correct process returns in h.
This shows Termination. Finally, observe that any complete
call to getSuccessor(k, v0) returns the value uj for which
the corresponding operation put(k, uj) appears first in the
linearization l. As a consequence, Agreement holds.

A shared memory can implement the operations put(k, v)
and get(k) of a plain KVS. As a consequence, the FLP
impossibility result [24] tells us that the consensus power
of such an interface is one. From the strictness of Herlihy’s
hierarchy [23], we deduce the separation result that a plain
KVS cannot implement a versioned KVS.

B. Listenable Key-Value Store
At the light of Theorem 1, we have to augment the

synchronization power of the plain KVS interface to support
versioned data. One solution would be to add some strong
synchronization primitive at the interface, such as a compare-
and-swap operation. However, this choice is not appealing
since (i) it requires a complex helping mechanism to
ensure progress of operations under contention, and (ii) a
synchronization primitive would not leverage the client-
server nature of the interface. In this paper, we consider
another possibility, which is clients being able to listen to
modifications made to the store.

We define a listenable KVS as a plain KVS augmented
with the following operations:

• regListener(f, k): it registers the function f as a listener
of the modifications occurring on key k. Every time
the KVS executes a put operation on k, the callback
f(k, u) is executed, where u is the new value of k.

• unregListener(f, k): to unregister the callback f .
In the remainder of this section we assume that operations of
such a listenable KVS are linearizable. This means that the
put() and get() operations behave like in an atomic register,
and that once a callback is registered, it gets notified of
all the modifications according to the linearization order in
which they occur.

A universal construction [23] is an algorithm to share
atomically any sequential code. The next section explains

Algorithm 2 Universal Construction – code at process p

1: Shared Variables:
2: K // Listenable KVS
3:
4: Local Variables:
5: s 2 States // initially ?
6: r 2 V alues // initially ?
7: Q // a FIFO queue; initialy ?
8:
9: open(k)

10: K.regListener(callBack)
11: (x, , f) get(k)
12: if (x, , f) = ? then
13: s s0

14: else if f = PER then
15: s x

16: else
17: K.put(k, (?, p,RET))
18: wait until s 6= ?
19:
20: close(k)
21: K.put(k, (s, p,PER))
22: K.unregListener(callBack)
23: s ?, r  ?, Q ?
24:
25: invoke(k, op)
26: r  ?
27: K.put(k, (op, p,INV))
28: wait until r 6= ?
29: return r

30:
31: When callBack(k , (x , p0

, f ))
32: if f = INV then
33: if s 6= ? then
34: (s, v) ⌧(s, x)
35: if p = p

0 then
36: r  v

37: else if Q 6= ? then
38: Q Q � hxi
39: else if f = RET then
40: if s 6= ? then
41: K.put(k, (s, p,PER))
42: else if p = p

0 then
43: Q hi
44: else if f = PER ^ s = ? then
45: s x

46: for x 2 Q do // In the order defined by Q.
47: (s, v) ⌧(s, x)

48:

how to implement this construction on top of a listenable
KVS. In Section V, we use this universal construction to
build a versioned data store.

C. Universal Construction
Our construction is a variation of the seminal state machine

replication approach [25]. It allows sharing any sequential
data type between multiple processes with linearizability
semantics [26]. In what follows, we first recall the formal
definition of a (sequential) data type and then we detail our



construction on top of a listenable KVS.
A sequential data type is an automaton defined by: a

set of states States, an initial state s0 in States, a set of
operations Ops , a set of response values V alues, and a
transition function ⌧ : States ⇥ Ops ! States ⇥ V alues.
Hereafter, and without lack of generality, we shall assume
that every operation op is total, meaning that States⇥{op}
is in the domain of ⌧ .

We present our universal construction in Algorithm 2. At
any process p, our algorithm maintains the following four
variables: K represents the listenable KVS, s is the logical
state of the shared object at process p, r is a reference to
the response value of the last local call issued by p, and Q

is a FIFO queue. Initially, process p assigns a null value (?)
to all local variables.

As mentioned previously, the core of our construction
inherits from the state machine approach. When a process
p invokes an operation op on a shared object o, op is
transmitted via a put(k, (op, p)) to the KVS, where k is the
unique key identifying o. Upon an execution of the callback
function callBack(k , (op, p0)), operation op is applied to
the local copy of object o. Then, in case op is registered as
a local call to o, i.e., p = p

0, the response value is returned
to the calling process.

This approach offers consistency, durability and it allows
processes to create and destroy shared objects. To this end,
the variable K stores tuples of the form (x, p, f), where (i) x
is either an operation, or an object state, (ii) p identifies the
process that executed this insertion on the KVS, and (iii) f
is a flag that indicates the type of the insertion. An insertion
flagged with INV indicates that process p called object o, and
in such a case, x is an operation. If f equals RET, process
p aims at retrieving the persistent state of the shared object.
Such a state s is forwarded by another process that opened
previously object o via an insertion of the form (s, p, PER)
in the store.

Process p opens an object when it executes the operation
open(). This call registers the callback function callBack(),
then retrieves the tuples stored in the KVS at key k. Three
different cases may occur:

1) The KVS does not contain any value at key k (line 12).
In such a case, p assigns to s the initial state s0 of the
object.

2) If now the tuple retrieved in the KVS is of the form
(x, , PER) then x is an object state and p assigns x to
variable s (line 15). Notice here that s is precisely the
object state after applying all the operations linearized
before process p opens object o. The registration of
callBack() in the KVS before the operation get()
ensures that p keeps track of the state for all the
operations that occur after open() in the linearization
order.

3) Finally, when the tuple stored at key k does not contain
an object state, the process waits until another process

transmits such an information (lines 17 and 18). This
is achieved by (i) storing a request flagged with RET in
the KVS, (ii) initializing Q to the value of an empty list
(line 43), (iii) storing all the calls to o that occur after
the opening request of p (line 38), and (iv) once the
state is retrieved, applying these operations in the order
defined by Q to variable s (lines 44 to 47). In case no
process is available, the opening fails and process p is
notified by an exception (not described in the code of
Algorithm 2.)

When the process p stops accessing object o, it executes the
operation close(). This operation inserts a tuple (s, p, PER)
inside the KVS. Then, it unregisters the callback function.
Finally, local variables are erased (lines 21 to 23).

The listenable KVS ensures durability of objects in case
processes properly close them. Nevertheless, if the last
process that opens the object crashes, this property is lost. To
avoid this situation, we require that at least F + 1 processes
have the object opened at any point in time, where F is
the maximal amount of crashes that may occur during an
execution.

Notice that we may improve performance of our construc-
tion by considering sequentially consistent objects. To achieve
this, we proceed as follows. We annotate every operation
with a flag indicating if it modifies, or not, the object. When
an operation op is called, in case op is read-only, we apply
it locally and return the result to the calling process. A
less intrusive approach consists in cloning the state of the
object, execute tentatively the call on the copy, and return
immediately the result in case the state does not change.

V. IMPLEMENTATION OF VERSIONING SUPPORT

In this section we decribe ALEPH, a generic versioning
support for any listenable KVS, as well as three representative
versioning implemented within. Each mechanism offers
different guarantees in terms of load balancing, latency and
storage overhead. We present an extensive evaluation of these
mechanisms and their inherent tradeoffs in Section VI.

A. Overview
The architecture of ALEPH consists in two tiers (see

Figure 1). The storage nodes of the KVS form the bottom tier.
They expose a listenable KVS interface, and ALEPH uses
them to store both versioned data and version indexes. The
upper tier executes operations on indexes using the universal
construction described in Section IV. This indexation tier is
generic and we present several variations in the following.
Clients communicate with the indexation tier using remote
procedure calls to store and query versioned data (Figure 1-
 ). Upon receiving the remote procedure call, the contacted
indexing node issues an operation on the appropriate index, by
means of the universal construction presented in Section IV.
This event triggers a chain of operations at the storage nodes
level (Figure 1, steps À and Ã). Finally, the indexing node
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Figure 1. General architecture of the versioned KVS.

returns the response to the calling client (Figure 1-Õ). ALEPH
collocates each indexing node with a storage node. This
design choice improves performance since data can transit
in a shared memory space. Notice that, nevertheless, this is
not mandatory in our architecture.

B. Storage

ALEPH can potentially use any listenable KVS as the
storage layer. The evaluation presented in Section VI uses
INFINISPAN [22]. INFINISPAN is a simple yet efficient one-
hop DHT that relies on consistent hashing to store and locate
data. In more details, it supports the following features:
(Routing) INFINISPAN uses a one-hop routing design, i.e.,

every node knows all storage nodes in the ring.
(Elasticity) Upon joining, a node chooses a random identifier

along the ring and fetches the ring structure from some
other DHT node. It then informs its neighbors that it is
joining.

(Storage) The storage layer uses consistent hashing [27] to
assign blocks to nodes with a replication factor r: a
data block with a key k is stored at the r nodes whose
identifiers follow k on the ring.

(Reliability) INFINISPAN builds on the JGroups communica-
tion library [28]. This library relies on failure detectors
to maintain a consistent view of the system. The repair
mechanisms of consistent hashing are triggered upon a
lack of response of a storage node within a timeout.

(Consistency) INFINISPAN implements the listenable KVS
interface with sequential consistency gurantees. INFIN-
ISPAN achieves this by using primary-backup replication
and the ability for clients to execute a get() operation
at any of the replicas. Events are forwarded by the
primary replica to the registered listeners. Upon a
primary change, an idempotency mechanism guards
the application against duplicated events.

ALEPH is implemented in 3,146 SLOC of Java, i.e. an
increase of 1% over the INFINISPAN base-code.

C. Indexation

Aside from the storage nodes, ALEPH employs a set of
indexing nodes. Each indexing node exports the versioned
KVS interface presented in Algorithm 1. Clients initially
retrieve the list of indexing nodes, and randomly choose one

Algorithm 3 Tree-based Versioning – code at process p

1: Shared Variables:
2: K // Listenable data store
3:
4: put(k, u, v)
5: choose some unique key l

6: K.put(l, u) // store value u at key l

7: T  K.open(k) // open the tree stored at key k

8: T.add(v, l) // update the tree
9: K.close(k) // close the tree

10:
11: get(k)
12: T  K.open(k) // retrieve the tree
13: ( , l) T.last() // compute the latest entry
14: K.close(k) // close the tree
15: return K.get(l) // return the corresponding value
16:

of them to connect. Clients then access the interface through
remote method invocations to their indexing node. At each
indexing node, a versioning mechanism maps operations on
Algorithm 1 to appropriate accesses on versioned data indexes.
The choice of the versioning mechanism implemented by the
indexing nodes of ALEPH is configurable at start time. In
the remainder of this section, we detail three representative
mechanisms.

Baseline: The first versioning mechanism we consider is
the naive algorithm presented at the bottom of Section III-C.
All the versions are stored in a sorted map, under the key
identifying the corresponding datum. Everytime a versioned
operation is executed, the map is entirely fetched from
the KVS then updated accordingly. Since every versioned
operation requires at most two accesses to the listenable KVS
API, this versioning mechanism is optimal when the amount
of versions per datum is small. On the other hand, when
the number of versions is large, this versioning mechanism
is expensive as it requires to retrieve all existing versions.
Furthemore, it does not support concurrent writers, nor does
it offer load balancing.

Tree-based Consistent Indexes: ALEPH supports a
second versioning mechanisms that builds sorted trees to
index the versions with the universal construction depicted
in Section IV. Algorithm 3 details this approach for the most
relevant operations of the versioning interface. This algorithm
indexes the versions of a datum inside a dedicated tree (when
versions are non-comparable a canonical order is chosen).
To execute a versioned operation on behalf of a client,
an indexing node opens the tree of versions, invokes the
corresponding operation on the tree, then closes it. With more
details, to implement a call to put(k, u, v), the indexing node
first picks some unique key l at which it stores the value u.
Then, the node opens the tree T stored at key k and adds the
pair (v, l) to T before closing it (lines 5 to 9). When retrieving
the latest version of some datum k, the indexing node first
computes the greatest entry ( , l) in the tree T (line 13), and



returns the value stored at key l in the KVS (line 15). For the
performance reasons we detailed in Section IV-C, ALEPH
implements this versioning mechanism with sequentially
consistent trees. Moreover, to save the cost of registering a
listener for read-only operations, indexing nodes postpone
the installation of listeners (Algorithm 2, line 10) until a
modification occurs.

Sharding the Trees: As we shall see in practice in
Section VI, the tree-based versioning mechanism works fine
in most cases, but fails for data having a large number of
versions. We describe a versioning mechanism that overcomes
this limitation by scattering the different versions into
multiple trees. In detail, for each datum k ALEPH makes use
of one sharded tree stored at key k. A sharded tree consists in
a sorted map M = {(vi, T1), (v2, T2) . . .} of trees distributed
and replicated in the storage layer. The tree Ti stores the
version of k that are greater are equal to vi, but smaller
than the version vi+ indexing tree Ti+1. The sorted map
M , as well as the trees referenced by M are implemented
using the universal construction introduced in Section IV-C.
Upon the insertion of a pair (u, v) in the sharded tree, the
indexing node retrieves the map of trees and finds the last
tree T whose version v

0 is smaller than v and adds (u, v)
to T . Then, if v is smaller than the version v

0 referencing
T in M , v

0 is updated with v in M . In case T contains
more than  elements, the greatest tuple (um, vm) in T is
removed, and added to the successor of T in M . If such a
successor S does not exists, the indexing node creates it in
M . Upon the retrieval of one or more versioned data in T ,
e.g., when executing getRange(k, v1, v2), the indexing node
exploits the fact that, at any point in time, the trees in M

are both disjoint and sorted.

VI. EVALUATION

Our evaluation consists in re-executing real access traces on
a Wikipedia dump stored by ALEPH. We ran our experiments
on a cluster of 24 virtualized 4-core Xeon 2.5 Ghz machines
with 4GB of memory, running Gentoo Linux 32bits, and
connected by a virtualized 1 Gbps switched network. Network
performance, as measured by ping and netperf, is of 0.3ms
for a round-trip with a bandwidth of 117MB/s. Clients runs
a modified version of YCSB [29] that replays Wikipedia
access traces on the interface defined in Algorithm 1. In the
remainder of this section we study the workload properties,
discuss the modifications implemented in YCSB, and finally
present our evaluation results along several dimensions.

A. Workload Characteristics

We use the dump of Wikipedia as of January 3rd, 2008,
published by the Wikibench benchmark [30]. Among other
information, it contains the page identifier and the list of
versions. We use this log to recreate all the versions of the
Wikipedia pages in ALEPH.
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Figure 2. Workload characterization.

Clients use an access log from the English Wikipedia
web servers [30] spanning August to September 2007. This
log contains (i) read accesses to the last versions, (ii) read
accesses to older versions, and (iii) range queries to retrieve
all versions (but not the content) of a page. As expected, most
requests (98.9%) in this workload consists in read access to
the last version. The remaining 0.64% and 0.46% consist in
reads of older versions and range queries, respectively.

We start by analyzing the distribution of versions per
page for three different Wikipedia languages: English (EN),
Japanese (JA) and Sicilian (SCN). These languages were
chosen because their size span different ranges: 11,404,989
(EN), 123,512 (JA) and 52,039 (SCN) articles. Results are
presented in Figure 2(a). Even though the vast majority of
pages have less than 10 versions, a small fraction of the pages
have hundreds to thousands of versions. These are precisely
the ones that might pose scalability issues, for instance, when
storing all the versions on a single node.

Figure 2(b) shows the page size distribution for each
language on a logarithmic scale. The three languages follow
the same distribution with an average page size of 3.86KB,
and a small fraction (0.0002%) is bigger than 1MB.
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Figure 3. Storage cost for each Wikipedia.

Figure 2(c) shows the distribution of requests over time
for the EN workload. The workload exhibits sudden spikes
that need to be accommodated properly. In the most busy
period, the system should sustain around 4,000 ops/second.

B. Client
The YCSB benchmark [29] executes create, read, update

and delete (CRUD) operations, following a chosen ratio of
operations and a key distribution. To replicate the access
pattern shown in Figure 2(c), YCSB had to be heavily
modified. First, the benchmark respects the order in which
keys are requested in the trace log, Second, it issues the
three types of (versioned) read operations occurring in the
log. To further stress ALEPH, multiple clients can execute
the log. In such a case, the benchmark orchestrates clients
to replay the trace log as fast as possible.

C. Experimental Results
This section reports several experimental results on the

use of ALEPH. We configure ALEPH to employ the three
versioning mechanisms covered in Section V-C; namely
(Baseline) a baseline implementation storing all the versions
of a page under a blob in the KVS, (Tree) a tree-based
indexation of the versions, and (Sharding) a mechanism
sharding the index with the  threshold fixed to 1000.

We perform our tests in-memory to reduce noise due to
persistence storage. When populating ALEPH, we scaled
down the size of each Wikipedia page by a factor 10 and
use only 0.138% of the English Wikipedia (EN). This is
necessary to satisfy the hardware constraints of our cluster.1

Storage cost: Figure 3 depicts the amount of memory
used per storage node to load each Wikipedia in ALEPH. As
expected, the baseline mechanism is the less expensive. It
costs around half the price of the two other mechanisms. This
difference is because such mechanisms separate data from
metadata (indexes of versions). We also observe in Figure 3
that sharding the version index brings a small overhead in
comparison to an approach where the index is stored at
a single storage node. This comes from the fact that the

1 A 32bits Java virtual machine addresses at most 2.5GB of memory.
Thus, the cluster offers at most 24⇥ 2.5 = 60GB of effective storage.

Technique SCN EN JA
Baseline 14s 189s 392s
Tree 105s 419s 1450s
Slow-down 7.5 2.2 3.6
Sharding 158s 559s 1662s
Slow-down 11.3 2.9 4.2

Table II
TOTAL INSERTION TIME PER LANGUAGE (SECONDS).

threshold  to create a new shard of the version index is
fixed to 1000, hence occurring in rare cases.

Insertion performance: Table II shows the total time
taken for a versioning mechanism to install each of the
Wikipedia dumps into ALEPH. Depending on the Wikipedia,
the baseline technique is 2.2 to 11.3 times faster. Such a
gap comes from the fact that INFINISPAN does not offer a
fast call to store multiple key-value pairs at once. Hence, in
the case of Tree and Sharding, the implementation simply
iterates over all the versions of a page to install them. Still, as
one can see by the Slow-down factor, this cost is amortized
for larger workloads.

Latencies Tradeoffs: Figure 4 compares the three
versioning mechanisms executing an hour of the trace log
on the EN dataset. This figure shows the last decile of
the latency distribution (as a CDF) for read (bottom) and
read range (top) queries. We grow the number of clients
executing the log (from left to right). The x-axis indicates the
latency in milliseconds on a logarithmic scale. Figure 4 only
reports the results of Baseline for 20 clients. As expected,
the Baseline mechanism is expensive and does not scale:
read and read range queries require on average 106ms and
152ms, respectively. On the other hand, Tree and Sharding
versioning mechanisms perform similarly. We observe that
95% of the read queries take less than 25ms even under high
load (100 clients). For range queries, Tree is more efficient
than Sharding, even in the tail of the distribution. We believe
that the benefits of sharding the index of versions might
require a more version-intensive dataset.

VII. CONCLUSION

This paper studies the requirements and tradeoffs to add
versioning support to a key-value store (KVS). First, we prove
that a simple put() and get() KVS interface doesn’t provide
sufficient synchronization power to support versioned data.
To sidestep this result, we then consider a KVS enriched with
support for listeners, and we explain how to build atomic
objects of arbitrary type on top of its interface. Using this
construction, we implement and evaluate various versioning
mechanisms on top of industrial-grade KVS, INFINISPAN.
Our empirical results, based on access traces and datasets
from Wikipedia, suggest that the integration of versioning
support into an existing KVS is practical, although trade-offs,
in terms of operation latencies and storage costs, must be
taken into account.



 90

 92

 94

 96

 98

 100

 1  10  100  1000

R
e

a
d

 L
a

te
n

ci
e

s
C

D
F

 (
%

 o
f 

q
u

e
ri
e

s)

20 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

40 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

60 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

80 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

100 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

R
e

a
d

-R
a

n
g

e
 L

a
te

n
ci

e
s

C
D

F
 (

%
 o

f 
q

u
e

ri
e

s)

20 clients

Tree
Sharding
Baseline

 90

 92

 94

 96

 98

 100

 1  10  100  1000

40 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

60 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

80 clients

 90

 92

 94

 96

 98

 100

 1  10  100  1000

100 clients

Figure 4. Read (bottom) and Read-Range (top) latencies for increasing number of clients.

VIII. ACKNOWLEDGEMENTS

We are thankful to the authors of Wikibench [30] to have
publicly released their datasets, as well as the INFINISPAN
developer community. The research leading to this publication
was partly funded by the European Commission’s FP7
under grant agreement number 318809, LEADS project
and 611068, CoherentPaaS project, as well as the ERDF-
European Regional Development Fund through the COM-
PETE Programme and by national funds through the FCT -
Portuguese Foundation for Science and Technology - within
project FCOMP-01-0124-FEDER-037281.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra - A Decentralized
Structured Storage System,” in Large Scale Distributed Sys-
tems and Middleware (LADIS), October 2009.

[2] “Riak,” http://basho.com/riak.
[3] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: the

definitive guide. O’Reilly Media, Inc., 2010.
[4] “Mongodb,” https://www.mongodb.org.
[5] “Mongo MVCC,” https://github.com/igd-geo/mongomvcc.
[6] L. George, HBase: The Definitive Guide. O’Reilly Media,

2011.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, “Dynamo: Amazon’s highly available key-value
store,” in ACM SOSP 2007, pp. 205–220.

[8] “HyperTable,” http://hypertable.org.
[9] R. T. Snodgrass, Developing Time-oriented Database Applica-

tions in SQL. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000.

[10] C. Date and H. Darwen, Temporal Data and the Relational
Model. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002.

[11] K. Kulkarni and J.-E. Michels, “Temporal features in
SQL:2011,” ACM SIGMOD Record, vol. 41, no. 3, pp. 34–43,
Oct. 2012.

[12] F. Zemke, “What’s new in SQL:2011,” ACM SIGMOD Record,
vol. 41, no. 1, pp. 67–73, 2012.

[13] P. A. Bernstein and N. Goodman, “Concurrency control in
distributed database systems,” ACM Comput. Surv., vol. 13,
no. 2, pp. 185–221, Jun. 1981.

[14] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[15] P. R. Johnson and R. H. Thomas, “The maintenance of
duplicate databases.” Internet RFC 677, 1976.

[16] F. Chang et al., “Bigtable: A distributed storage system for
structured data,” TOCS, vol. 26, no. 2, 2008.

[17] T. A. Marsland and Z. Yang, Global States and Time in
Distributed Systems. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1994.

[18] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and
C. Kline, “Detection of mutual inconsistency in distributed
systems,” IEEE Trans. Softw. Eng., vol. 9, no. 3, pp. 240–247,
May 1983.

[19] J. Almeida, P. Almeida, and C. Baquero, “Bounded version
vectors,” Distributed Computing, vol. 3274, pp. 102–116, 2004.

[20] D. Malkhi and D. B. Terry, “Concise version vectors in WinFS,”
Distributed Computing, vol. 20, no. 3, pp. 209–219, 2007.

[21] P. Almeida, C. Baquero, and V. Fonte, “Interval tree clocks,”
Principles of Distributed Systems, vol. 5401, pp. 259–274,
2008.

[22] F. Marchioni and M. Surtani, Infinispan Data Grid Platform.
Packt Publishing Ltd, 2012.

[23] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124–149, Jan. 1991.

[24] M. J. Fischer, N. A. Lynch, and M. S. Patterson, “Impossibility
of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, pp. 374–382, Apr. 1985.

[25] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: a tutorial,” ACM Comput. Surv.,
vol. 22, no. 4, pp. 299–319, 1990.

[26] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness
condition for concurrent objects,” ACM Transactions on
Programming Languages and Systems, vol. 12, pp. 463–492,
1990.

[27] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin, “Consistent hashing and random trees: dis-
tributed caching protocols for relieving hot spots on the World
Wide Web,” in ACM STOC ’97, pp. 654–663.

[28] B. Ban, “JGroups: A Toolkit for Reliable Multicast Commu-
nication. http://www.jgroups.org,” 2007.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in ACM SoCC, 2010, pp. 143–154.

[30] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia
workload analysis for decentralized hosting,” Elsevier Com-
puter Networks, vol. 53, no. 11, pp. 1830–1845, July 2009,
http://www.globule.org/publi/WWADH_comnet2009.html.

http://basho.com/riak
https://www.mongodb.org
https://github.com/igd-geo/mongomvcc
http://hypertable.org
http://www.globule.org/publi/WWADH_comnet2009.html


ZooFence: Principled Service Partitioning and
Application to the ZooKeeper Coordination Service

Raluca Halalai, Pierre Sutra, Étienne Rivière, Pascal Felber
University of Neuchâtel, Switzerland

first.last@unine.ch

Abstract—Cloud computing infrastructures leverage fault-

tolerant and geographically distributed services in order to meet

the requirements of modern applications. Each service deals with

a large number of clients that compete for the resources it offers.

When the load increases, the service needs to scale. In this paper,

we investigate a scalability solution which consists in partitioning

the service state. We formulate specific conditions under which a

service is partitionable. Then, we present a general algorithm to

build a dependable and consistent partitioned service. To assess

the practicability of our approach, we implement and evaluate

the ZooFence coordination service. ZooFence orchestrates several

instances of ZooKeeper and presents the exact same API and

semantics to its clients. It automatically splits the coordination

service state among ZooKeeper instances while being transparent

to the application. By reducing the convoy effect on operations

and leveraging the workload locality, our approach allows propos-

ing a coordination service with a greater scalability than with a

single ZooKeeper instance. The evaluation of ZooFence assesses

this claim for two benchmarks, a synthetic service of concurrent

queues and the BookKeeper distributed logging engine.

I. INTRODUCTION

Distributed services form the basic building blocks of modern
computer architectures. A large number of clients access these
services, and when a client performs a command on a service, it
usually expects the service to be responsive and consistent. The
seminal state machine replication (SMR) approach offers both
guarantees. By replicating the service on multiple servers, the
commands are wait-free despite failures, and by executing them
in the same order at all replicas, they are linearizable. However,
it is well-known that this last strategy has a performance cost:
because SMR serializes all commands, it does not leverage the
intrinsic parallelism of the workload.

To overcome the above problems, several directions have
been investigated. First, operations that do not change the
service state can be executed at a single replica. This approach
implies dropping linearizability for sequential consistency, but
such a limitation is unavoidable in a partially-asynchronous
system [1]. Second, SMR can leverage the commutativity of
updates to improve response time. This strategy exhibits a
performance improvement of at most 33% in comparison to
the baseline [2]. Third, one can partition the state of the service
and distribute the partitions between replicas [3]. When the
workload is fully parallel, the scale-out of the partitioning
approach is optimal. Hence, we consider this approach as the
most promising direction.

To illustrate in practice the benefits of partitioning, let us
consider Figure 1. In this figure, we compare a partitioned
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Fig. 1. Partitioned versus non-partitioned queue service.

queue service versus a non-partitioned one. In more details,
we execute a hypothetical consumer/producer workload where
(i) each consumer pulls resources from some defined queue,
and (ii) each producer pushes with 80% chance a resource to
a random queue, and with 20% to all the queues. In the top-
curves, we partition the queues, each being implemented with
an instance of the Apache ZooKeeper coordination service
[4]. In the non-partitioned case (bottom-curve), all queues
employ the same ZooKeeper. The total computational power
remains the same for the partitioned and non-partitioned
implementations. For 32 clients, the partitioned approach
outperforms the non-partitioned one by a factor of 1.6.

Despite its obvious interest, to the best of our knowledge,
few research efforts have been devoted to a principled study
of service partitioning. In this paper, we try to bridge this
gap. Our first contribution is to show that the partitioning
theorem of Marandi et al. [3] omits some cases. We extend it
and state a more general result under which it is possible to
partition a shared service. Our second contribution consists in a
general algorithm to partition a service. Our third contribution
is ZooFence, a system that partitions the ZooKeeper coordi-
nation service following the previously introduced algorithm.
ZooFence orchestrates multiple vanilla ZooKeepers, delegating
portions of its state to each of them, and forwarding the
operations that act on their respective partitions. In our last
contribution, we evaluate ZooFence with two benchmarks, a
synthetic concurrent queues service in a geo-distributed setting
and the BookKeeper logging service. This evaluation shows
that ZooFence improves the performance of the coordination



service compared to a single ZooKeeper, while offering at core
the same guarantees.

The remainder of this paper is organized as follows. We
formulate our results on service partitioning in Section II. Sec-
tion III presents our general partitioning algorithm. We give an
overview of ZooFence and the internals of its implementation
in Section IV. We present a detailed evaluation of ZooFence
in Section V. Section VI surveys related work. We conclude in
Section VII. For readability purposes, we defer all our proofs
to the appendix.

II. CONSISTENT SERVICE PARTITIONING

In what follows, we define the elements of our system model
and the notion of partition. Further, we present two results that
characterize if the partitioning of a service is consistent. These
results form the guidelines of our approach to split a shared
service into multiple parts in order to leverage the parallelism
of its operations.

A. System Model

A service is specified by some serial data type. The serial data
type defines the possible states of the service, the operations
(or commands) to access it, as well as the response values
from these commands. Formally, a serial data type is an
automaton S = (States, s0,Cmd ,Values , ⌧) where States
is the set of states of S, s0 2 States its initial state,
Cmd the commands of S, Values the response values and
⌧ : States⇥ Cmd ! States⇥Values defines the transition
relation. A command c is total if States⇥{c} is in the domain
of ⌧ . Command c is deterministic if the restriction of ⌧ to
States ⇥ {c} is a function. Hereafter, we assume that all
commands are total and deterministic. We use .st and .val
selectors to respectively extract the state and the response value
components of a command, i.e., given a state s and a command
c, ⌧(s, c) = (⌧(s, c).st , ⌧(s, c).val). Function ⌧+ is defined by
repeated application of ⌧ , i.e., given a sequence of commands
� = hc1, . . . , cn�1i and a state s:

⌧+(s,�)
4
=

⇢
⌧(s, c1) if n = 1,
⌧+(⌧(s, c1).st , hc2, . . . , cni) otherwise.

Two commands c and d commute, written c ⇣ d, if in every
state s we have:

c ⇣ d
4
=

8
<

:

⌧+(s, hc, di).st = ⌧+(s, hd, ci).st
⌧+(s, hd, ci).val = ⌧+(s, c).val
⌧+(s, hc, di).val = ⌧+(s, d).val

For any two commands c and d, we write c = d when in every
state s, ⌧(s, c) = ⌧(s, d). By extension, for some command c
and some sequence � = hc1, . . . , cn�2i, we write c = � when
⌧+(s, hc1, . . . , cni) = ⌧(s, c).

To illustrate the above notations, let us consider a bank ac-
count equipped with the usual withdraw and deposit operations.
We define States as N, with s0 = 0. A deposit operation d(10)
brings s to s+ 10 and returns OK . In case the bank prohibits
overdrafts, a withdraw operation w(x) returns NOK if s < x;
otherwise it brings s to s� x.

a) History: We consider a global time model and some
bounded set of client processes that may fail-stop by crashing. A
history is a sequence of invocations and responses of commands
by the clients on one or more services. When command c
precedes d in history h, we write c <h d. We use timelines
to illustrate histories. For instance the timeline below depicts
the interleaving of commands d(10) and w(5), executed by
respectively clients p and q in some history h1.

(h1)
p

q

d(10) OK

w(5) OK

Following Herlihy and Wing [5], histories have various
properties according to the way invocations and responses
interleave. For the sake of completeness, we recall these
properties in what follows. A history h is complete if every
invocation has a matching response. A sequential history h
is a non-interleaved sequence of invocations and matching
responses, possibly terminated by a non-returning invocation.
When a history h is not sequential, we say that it is concurrent.
A history h is well-formed if (i) h|p is sequential for every
client process p, (ii) for every command c, c is invoked at
most once in h, and (iii) for every response resi(c)v there
exists an invocation inv i(c) that precedes it in h.1 A well-
formed history h is legal if for every service S, h|S is
both complete and sequential, and denoting hc1, . . . , cn�1i
the sequence of commands appearing in h|S, if for some
command ck a response value appears in h|S, it equals
⌧+(s0, hc1, . . . cki).val .

b) Linearizability: Two histories h and h0 are said
equivalent if they contain the same set of events. Given a
service S and a history h of S, h is linearizable [5] if it
can be extended (by appending zero or more responses) to
some complete history h0 equivalent to a legal and sequential
history l of S with <h0✓<l. In such a case, history l is named
a linearization of h. For instance, the history h1 above is
linearizable since it is equivalent to a sequential one in which
d(10) occurs before w(5). The histories of a service S are
all the linearizable histories that are constructible with the
commands of S. A service S implements a service T when for
every linearizable history h of S, there exists a linearizable
history h0 of T such that h0 is a high-level view of h [6].2

c) Partition: Given a finite family of services (Sk)1kn,
the synchronized product of (Sk)k is the service defined by
(
Q

k Statesk, (s
0
1 , . . . , s

0
n),

S
k Cmdk,

S
k Valuesk, ⌧) where

for every state s = (s1, . . . , sn) and every command
c in some Cmdk, the transition function ⌧ is given by
⌧(s, c) = ((s1, . . . , ⌧k(sk, c).st , . . . , sn), ⌧k(sk, c).val). Given
a service S, the family (Sk)1kn is a partition of S when
its synchronized product satisfies(i) States ⇢

Q
k Statesk,

(ii) s0 = (s01 , . . . , s
0
n), and (iii) for every command c, there

1For some service or client x, h|x is the projection of history h over x.
2A high-level view is generally constructed via a refinement mapping from

the states of S to the states of T [7].



exists a unique sequence � in
S

k Cmdk, named the sub-
commands of c, satisfying � = c. The partition (Sk)k is said
consistent when it implements S.

To illustrate the notion of partition, let us go back to our
banking example. A simplistic bank service allows its clients
to withdraw and deposit money on an account, and to transfer
money between two accounts. We can partition this service
into a set of branches, each holding one or more accounts. A
transfer of an amount x between accounts i and j is modeled
as the sequence of sub-commands hwi(x).dj(x)i, where wi(x)
and dj(x) are respectively a withdrawal and a deposit of the
amount x on the appropriate branch. However, precautions must
be taken when concurrent commands occur on the partitioned
service. For instance, the following history should be forbidden
by the concurrency control mechanism to avoid money creation
(concurrent withdrawals cannot both succeed as the balance is
not sufficient).

(h2)
p

q

d1(10) OK w1(10) OK

w1(10) OK

d2(10) OK

In the section that follows, we characterize precisely when
the partition of a service is correct.

B. Partitioning Theorems

When there is no invariant across the partition and every
command is a valid sub-command for one of its parts, the
partition is strict. We first establish that a strict partition is
always consistent.

Theorem 1. Consider a service S and a partition (Sk)k of
S. If both

Q
k Statesk = States and Cmd =

S
k Cmdk hold

then (Sk)k is a consistent partition of S.

The above theorem is named the locality property of
linearizability [5]. It states that the product of linearizable
implementations of a set of services is linearizable. From the
perspective of service partitioning, this suggests to implement
each part as a replicated state machine. Such an idea forms
the basic building block of our protocols.

When commands contain several sub-commands, Theorem 1
does not hold anymore. Nevertheless, it is possible to state
a similar result when constraining the order in which sub-
commands interleave. This is the observation made by Marandi
et al. [3], despite a small omission in the original paper. Below,
we show where the error occurs and propose a corrected and
extended formulation. To state our results, we first need to
introduce the notion of conflict graph.

Definition 1. (Conflict Graph) Consider a history h of a
partition (Sk)k of some service S. The conflict graph of S
induced by h is the graph Gh = (V,E) such that V contains
the set of commands executed in h, and E is the set of pairs
of commands (c, d) with c 6= d, for which there exist two
sub-commands ci and dj executed on some Sk such that
ci <h|Sk

dj .

In [3], the authors claim that the partition (Sk)k is consistent,
provided that h is linearizable for each part Sk and Gh

is acyclic. Unfortunately, this characterization is incorrect
because Gh does not take into account the causality with
which commands are executed in h. We argue this point with a
counter-example. Let us consider again that our banking service
is partitioned in a set of branches. Clients p and q execute
the three commands hw1(10), d2(10)i, w1(5) and w2(5) as in
history h3 where account 1 is initially provisioned with the
amount 10.

(h3)
p

q

w1(10) OK

w1(5) NOK w2(5) NOK

d2(10) OK

Since both withdrawals of client q fail, history h3 is not
linearizable. However, Gh3 remains acyclic since it does not
capture that process q creates the order w1(5) <h3 w2(5).

In what follows, we prove an extended and corrected
formulation of the partitioning result of Marandi et al. [3].
Our characterization is based on the notion of semantic graph
that we define next.

Definition 2. (Semantic Graph) Consider a history h of a
partition (Sk)k of some service S. The semantic graph of S
induced by h is the graph Gh = (V,E) such that V contains
the set of commands that appear in h and E is the set of
pairs (c, d), with c 6= d, for which either(i) there exist two
non-commuting sub-commands ci and dj in some part Sk such
that ci <h|Sk

dj , or (ii) c <h d, where we note c <h d when
all the sub-commands of c precede all the sub-commands of d
in history h.

In contrast to the notion of conflict graph, a semantic
graph takes into account the commutativity of sub-commands.
To understand why, assume that the banking service allows
unlimited overdraft. In such a case, any interleaving of the
sub-commands would produce a linearizable history. The
partitioning theorem that follows generalizes this observation.
It states that the acyclicity of non-commuting sub-commands in
the semantic graph is a sufficient condition to attain consistency.
A proof appears in Appendix A.

Theorem 2. A partition (Sk)k of a service S is consistent if
for every history h of (Sk)k, there exists some linearization l
of h such that the semantic graph of S induced by l is acyclic.

III. PROTOCOLS

Building upon our previous theorems, this section describes
several constructions to partition a shared service. Our presen-
tation follows a refinement process. We start with an initial
construction requiring that strictly disjoint services form the
partition, then we introduce a more general technique that
can accommodate with any type of partitioning. Our last
construction improves parallelism at the cost of constraining
how the partition is structured. To ease the presentation of
our algorithms, we shall be assuming hereafter that sub-
commands are idempotent and that no two sub-commands



Algorithm 1 Base construction – code at client p
1: invoke(c) :=
2: let Sk such that c 2 Cmdk
3: return M(Sk).invoke(c)

in the same command access the same part. Nevertheless, all
of our algorithms can be easily adapted to handle the cases
where such properties do not hold.

A. Initial Construction
We depict in Algorithm 1 a first construction when the

partition (Sk)k of service S is strict. This algorithm makes
use of a mapping M satisfying that for every Sk, M(Sk) is
a replicated state machine implementing Sk. When a client p
executes a command c on S, it uses M to retrieve the state
machine implementing Sk, where Sk is the service on which
c executes (line 2). Then, client p invokes the command on
M(Sk) and returns the result of this invocation (line 3).

Since (Sk)k is strict and M(Sk) is a linearizable implemen-
tation of Sk, Algorithm 1 implements a consistent partition of S
by Theorem 1. Besides, the implementation of (Sk)k obtained
through Algorithm 1 is wait-free [8]. This property is inherited
from the underlying replicated state machines that support
Algorithm 1. In addition, this base construction is optimal in
terms of scalability since, when clients access uniformly the
parts, the throughput of the partitioned service is |(Sk)k| times
the throughput of S.

B. A Queue-based Construction
In what follows, we refine Algorithm 1 to handle the case

where multiple sub-commands compose a command. A naive
solution would consist in modifying Algorithm 1 so that when
the client process p executes a command c = hc1, . . . , cni,
it applies in order all the sub-commands c1, . . . , cn to the
appropriate part. Such an approach however fails since(i) an
invariant may link different parts of the partition, and (ii) if
client p crashes in the middle of its execution, not all the parts
will reflect the effects of command c.

Algorithm 2 depicts a solution to deal with these two issues.
This algorithm ensures that either all the sub-commands of
a command execute, or none of them, and that the state of
the partitioned service remains consistent. It is based on a
shared FIFO queue abstraction (variable Q) and an eventual
leader election service (variable ⌦). Clients use Q to submit
the commands they wish to execute. Submitted commands are
then executed in the queue order by the leader elected by ⌦.

With more details, our algorithm works as follows. Upon
invoking a command c = hc1, . . . , cni, a client p appends c to
the queue Q, then it starts participating in the leader election
(line 8). In case p is elected, it processes the commands in
Q (line 15). For each such command d, p executes all the
sub-commands of d once every non-commuting command
before d has been executed (line 15). The result of the last
sub-command of d is stored as the response of d in the queue
Q (lines 17 to 20). This pattern is repeated until the leader,
which might not be p, executes command c.

Algorithm 2 Queue-based construction – code at client p
1: Shared Variables:

2: ⌦ // a leader election
3: Q // an atomic queue
4:
5: invoke(c) :=
6: r  ?
7: Q Q � (c, r)
8: ⌦.register()
9: wait until r 6= ?

10: ⌦.unregister()
11: Q Q \ (c, r)
12: return r

13:
14: when p = ⌦.leader()
15: let (d, r0) 2 Q : 8(e, r̂) <Q (d, r0) : r̂ 6= ? _ d ⇣ e

16: let d1, . . . , dm : d = hd1, . . . , dmi
17: for all j 2 J1,mK do

18: let Sk : dj 2 Cmdk
19: r

00  M(Sk).invoke(dj)
20: r

0  r

00

The leader election service ⌦ allows a process to register
(line 8) and to unregister (line 10). This service satisfies that
eventually(i) only registered processes are elected, and (ii) at
least one correct process considers itself as the leader. We note
here that property (ii) was previously mentioned in [9], and
that ⌦ is a form of restricted leader election [10]. This makes
⌦ strictly weaker than the leader oracle used in consensus [11].

C. Ensuring Disjoint Access Parallelism
Both the protocol of Marandi et al. [3] and Algorithm 2

order submitted commands through some global shared object:
an instance of the Ring Paxos protocol in the case of [3],
and a shared queue for Algorithm 2. As a consequence, the
synchronization cost of executing a command is related to the
number of concurrent commands. This defeats the primary goal
of partitioning which is to scale-up the service by leveraging
parallelism for commands that access different parts of the
service. Such a property is named disjoint-access parallelism
(DAP) in the literature on shared memory computing [12]. In
what follows, we depict a refinement of our previous algorithm
that ensures the following DAP property:

Definition 3 (Disjoint-Access Parallelism). Consider an algo-
rithm A implementing a partition (Sk)k of some service S.
We say that A is disjoint-access parallel when in each of its
histories h there exists a linearization l of h, such that if p and
q concurrently executing commands c and d contend on some
shared object in A, there exists a non-directed path linking c
to d in the conflict graph of l.

Algorithm 3 depicts our construction of a DAP consistent
partitioning. For each part Sk, we assign respectively a queue
Q[k] and a leader election ⌦[k]. When a client p invokes a
command c = hc1, . . . , cmi, it iteratively executes each sub-
command ci on the appropriate replicated state machine. To
that end, client p adds ci to the queue Q[k] and then joins
leader election ⌦[k] to execute all the sub-commands in Q[k].
The helping mechanism in Algorithm 3 is similar to the one
we employed in Algorithm 2: when p is the leader and a sub-



Algorithm 3 DAP construction – code at client p
1: Shared Variables:

2: ⌦ // an array of leader election objects
3: Q // an array of atomic queues
4:
5: invoke(c) :=
6: return invoke_sub(first(c))
7:
8: invoke_sub(ci) :=
9: r  ?

10: let Sk : ci 2 Cmdk
11: Q[k] Q[k] � (ci, r)
12: ⌦[k].register()
13: wait until r 6= ?
14: ⌦[k].unregister()
15: Q[k] Q[k] \ (ci, r)
16: return r

17:
18: when p = ⌦[l].leader() // for some l

19: let (dj , r0) 2 Q[l] : 8(ej0 , r̂) <Q[l] (dj , r
0) : r̂ 6= ? _ dj ⇣ ej0

20: r

00  M(Sl).invoke(dj)
21: if dj 6= last(d) then

22: r

00  invoke_sub(dj+1)
23: r

0  r

00

command dj occurs before ci in the queue Q[k], p must first
execute dj as well as the sub-commands following it, before
it can execute ci (lines 18 to 23). This pattern ensures the
correctness of our construction in the case where the following
property holds:
(P1) There exists an ordering ⌧ of (Sk)k such that for any

two sub-commands ci and cj accessing respectively parts
Sk and Sk0 , if ci precedes cj in c then Sk ⌧ Sk0 holds.

Unfortunately, property P1 does not hold for every partition
(Sk)k of a service S. For instance in our previous banking
example, P1 only holds if money transfers between accounts
in different branches occur in some canonical order: e.g.,
hwi(x), dj(x)i is allowed if and only if i < j holds.

Our key observation is that we can nevertheless enforce the
acyclicity of the semantic graph by implementing the partition
in a hierarchical manner. We achieve this via two modifications
to Algorithm 3. First, we replace P1 by the fact that:
(P2) Function M returns a set of replicated state machines for

each Sk such that for any two sub-commands ci and cj
accessing respectively parts Sk and Sk0 , if ci precedes cj
in c then either M(Sk) ✓ M(Sk0) or the converse holds.

Second, upon executing a sub-command ci (at line 20 in
Algorithm 3), we apply ci in some canonical order to all
the replicated state machines in M(Sk) before returning the
value r00. These two modifications ensure that the premises of
Theorem 2 hold for any partition of some shared service S. We
sketch a proof of correctness for Algorithm 3 in Appendix B.

Going back to the design of a partitioned banking service,
applying P2 requires the addition of a special account t
replicated at all branches, such that when a money transfer
occurs between two accounts in different branches, money goes
through account t, i.e., hwi(x), dt(x).wt(x).dj(x)i.

Algorithm 3 with property P2 is the general method we
employ to partition a service. We implemented it in ZooFence
where we partition the shared tree interface exposed by the

Apache Zookeeper coordination service. By partitioning the
tree, ZooFence reduces contention and leverages the locality
of operations. Both effects contribute to improve latency
of operations and increase overall throughput. We describe
ZooFence in detail in the next section.

IV. THE ZOOFENCE SERVICE

In this section, we present an application of our principled
partitioning approach to the popular Apache ZooKeeper [4]
coordination service. The resulting system, named ZooFence,
orchestrates several independent instances of ZooKeeper. The
use of ZooFence is transparent to applications: it offers
the exact same semantics and API as a single instance of
ZooKeeper. However, the design of ZooFence allows avoiding
synchronization between parts when it is not necessary. This
reduces the impact of convoy effects that synchronization
causes [13].

The partitioning of the ZooKeeper service follows the
approach introduced in Algorithm 3. ZooFence splits the tree
structure between multiple ZooKeeper instances. Commands
that access distinct parts of the tree run in parallel on distinct
instances, while guaranteeing both strong consistency and
wait-freedom. Commands that access a single part of the
tree run on a single instance. This section presents the main
components of ZooFence, discusses our design choices with
regard to Algorithm 3, then details some specific aspects of its
implementation. We give a high-level specification of ZooFence
in Appendix C.

A. Overview
Figure 2 depicts the general architecture of ZooFence.

The system has four components:(i) A set of independent
ZooKeeper instances that ZooFence orchestrates; (ii) A client-
side library; (iii) A set of queues storing commands that need to
be executed on multiple instances; and (iv) A set of executors
that fetch commands from the queues, delegate them to the
appropriate instances, and return the result to the calling clients.

ZooKeeper i1 ZooKeeper i2 ZooKeeper i3

ZooFence
Executor

ZooFence
Queue

ZooFenceLib ZooFenceLib ZooFenceLib

Client 1 Client 2 Client 3

ZooFence
Executor

ZooFence
Queue

Fig. 2. ZooFence design.

B. Client-Side Library
ZooFence clients execute commands through a client-side

library that implements the ZooKeeper API. This interface



consists of a set of commands accessing a concurrent tree
data structure composed of znodes. A znode in the tree stores
some data, and is accessible via a path as in UNIX filesystems.
Znodes can be persistent, meaning they belong to the tree
until a client explicitly deletes them, or ephemeral, in which
case they are automatically removed once the client that
created them disconnects or crashes. In addition, znodes can be
sequential. For such znodes, the system automatically appends
a monotonically increasing counter to their names at creation
time. A client can manipulate a znode through read or write
commands. Read commands, e.g., exists, getChildren
or getData return a sub-state of the shared tree without
modifying it. Write commands such as create, delete or
setData, modify the state of the tree and return metadata
information to the client.

Clients execute a command on one or more of the orches-
trated ZooKeeper instances according to a flattening function.
This function plays the role of function M in Algorithm 3
and maps paths to ZooKeeper instances. Multiple flattening
functions can be used. The choice of a flattening function
depends on how the application accesses the concurrent tree
structure. When a client executes a command c on a znode
n, ZooFence determines, using the flattening function, the set
of ZooKeeper instances I = f(n) on which c is executed.
Command c is trivial when f(n) returns a single ZooKeeper
instance. In such a case, the command is directly forwarded to
that instance. If c is non-trivial, it is inserted into the appropriate
queue. The executor associated to the queue forwards the
command to the corresponding ZooKeeper instances, then
returns the result to the client.

The flattening function f satisfies property P2. This means
that if a znode n with parent p is mapped to a set of instances
I = f(n) then I is also a subset of f(p). To understand why,
consider that znode /a is mapped to instances {i1, i2, i3}, and
/a/b to {i1, i2}. In case a client executes create(/a/b),
because both instances i1 and i2 hold a copy of /a, the creation
of /a/b succeeds if and only if /a was created previously.
This ensures that a znode n with parent p is in the tree if
and only if p also exists in the tree. The next section provides
additional details on the internals of ZooFence, explaining how
we maintain this key invariant.

C. Executor

The core notion of ZooFence is the executor. Each executor
implements the logic of the sub-commands execution mecha-
nism we depicted at lines 18 to 23 in Algorithm 3. There is
one executor for each set of ZooKeeper instances replicating a
common path. For instance, in the above example, there is one
executor for /a, replicated at {i1, i2, i3} and one for /a/b,
replicated at {i1, i2}. As explained previously, each executor is
associated with a FIFO queue. When a client executes a non-
trivial command, it adds that command to the corresponding
queue according to the flattening function. The executor scans
the queue in order to retrieve the next command c it has to
execute. Then, it forwards c to all the associated ZooKeeper

instances, merges their results, and sends the final result back
to the client before deleting c from the queue.

d) Queue synchronization: Using multiple executors
improves the performance of ZooFence, but requires additional
synchronization. To illustrate this point, let us consider again
that /a is replicated at {i1, i2, i3} and /a/b at {i1, i2}. The
set of instances associated with znode /a/b has a smaller
cardinality than the set of instances associated with its parent,
/a; we call /a/b a fringe znode. Assume that a client attempts
to delete /a, while another client concurrently attempts to
delete /a/b. Due to the tree invariant, the deletion of /a
succeeds only if it does not have any children. In the scenario
above, if the deletion of znode /a/b finishes on i1, but not
on i2, before the deletion of znode /a is executed, then /a

would be deleted from i1, but not from i2, leaving replicas
in an inconsistent state. We solve the problems related to
fringe znodes by synchronizing queues following the approach
depicted at lines 21 to 22 in Algorithm 3: Upon creation of such
a znode, the executor adds the command to the parent queue.
Upon deletion, the executor first executes the command then,
in case of success, it adds the command to the parent queue.
When adding a command to the parent queue, the executor
waits for a result before returning.

e) Failure Recovery Mechanism: The executor is a
dependable component of ZooFence. To ensure this guarantee,
we replicate each executor and employ the same leader election
mechanism as in Algorithm 3. When the previously elected
executor is unresponsive or has crashed, ZooFence nominates
a new one and resumes the execution of commands. ZooFence
prevents inconsistencies that might result, as follows: (i) We
ensure idempotency at the client side; and (ii) We use the
command semantics to resume incomplete commands on the
associated ZooKeeper instances.

f) Queue monitoring: Executors retrieve commands from
their respective queues and keep them in a local cache. Instead
of actively polling the queue for new commands, executors use
the ZooKeeper event notification mechanism, watches, which
are triggered when the queues are modified. Executors check
their local caches every time the watch set on their queue
is triggered; if the cache is empty, the executor performs a
getChildren command to repopulate its cache.

g) Asynchronous commands: Each executor retrieves
commands from its local cache and forwards them to its set of
ZooKeeper instances. We use asynchronous commands between
an executor and its ZooKeeper instances, regardless of the type
of command issued by the ZooFence client. The only difference
between synchronous and asynchronous client commands
is local, in the ZooFence client library; for synchronous
commands, the library blocks and waits for the reply to arrive.
Since ZooKeeper guarantees FIFO order even for asynchronous
commands, this optimization which is transparent to the clients,
increases the throughput of the executor without changing the
semantics of synchronous

h) Colocation: An executor is a stand-alone process of
ZooFence that runs on a different machine than the clients. To
reduce network latency for queue accesses, an executor usually
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Fig. 3. Comparison of ZooFence against a vanilla and a manually-partitioned ZooKeeper.

executes at the same site as the ZooKeeper instance that hosts
its corresponding queue.

D. Implementation Details
Our prototype implementation of ZooFence is written in Java

and contains around 2,500 SLOC. It is built upon the out-of-
the-box ZooKeeper 3.4.5 distribution. Clients transparently
instantiate a ZooFence deployment when the connection
string contains multiple ZooKeeper instances separated by
a “|” character, e.g., “127.0.0.1:2181 | 127.0.0.1:2182”. As
discussed in Section IV-B, ZooFence clients forward non-
trivial commands to executors via queues. Client commands are
serialized and stored in persistent sequential znodes; we use the
sequential attribute offered by ZooKeeper to assign a sequence
number to each command in the queue. Queues are stored in
dedicated administrative ZooKeepers. Executors are identified
by ephemeral znodes, also stored in administrative ZooKeepers.
The choice of the administrative ZooKeepers among the existing
instances is currently not automated and left as a future work.
Clients open TCP connections to executors before putting
commands in queues. When commands complete, executors
send the results over the respective connections.

V. EVALUATION

We evaluate our ZooFence prototype in two scenarios:
a synthetic concurrent queue service deployed at multiple
geographically-distributed sites, and the BookKeeper distributed
logging service [14]. We compare ZooFence against vanilla
ZooKeeper deployments in terms of throughput, latency and
scalability.

A. Concurrent Queues Service
In this experiment, we show that ZooFence can leverage

access patterns locality to improve both throughput and
responsiveness of distributed applications. To that end, we
emulate a geographically-distributed deployment. Each site

consists of dual-core machines with 2 GB RAM, and hosts one
ZooKeeper instance and several clients. Inside a site, machines
communicate using a (native) gigabit network. Between sites,
we set up the round-trip delay to approximately 50 ms.
Our experiment uses a single executor, collocated with the
administrative ZooKeeper on an eight-core machine at a
different site than all clients.

In this environment, we deploy a service consisting of
five concurrent queues. Four of the queues exhibit strong
locality, and are used exclusively by clients from the same site
(i.e., queue1 is used only by clients from site1, queue2 from
site2, etc.). We refer to these queues as site queues. The fifth
queue is used by clients from all sites. We refer to it as the
geo-distributed queue. We vary the number of clients within
each site from one to eight. Each client runs two producer
processes. Producers mostly create znodes in their site queue,
but occasionally write to the geo-distributed queue as well. We
note that this is a write-heavy workload, which represents a
worst-case scenario for both ZooFence and ZooKeeper.

Our experiments compare in terms of performance three
different deployments:(1) ZooFence with a flattening function
that assigns site queues to local ZooKeeper instances, and the
geo-distributed queue to all instances. (2) A vanilla ZooKeeper,
which involves all the available ZooKeeper instances: a leader
and three followers, with synchronization bound set to 175 ms.
All queues are stored by this ZooKeeper instance. This is the
baseline for our experiments – how ZooKeeper would be used
in the present. (3) A manually-partitioned ZooKeeper. Each
machine runs two ZooKeeper instances: one instance stores
the site queue, and the other one stores the geo-distributed
queue; the latter is a ZooKeeper instance covering all sites.
This deployment is the optimum an experienced ZooKeeper
administrator can achieve: writes accessing the geo-distributed
queue are broadcast to all sites, otherwise they are served
locally.

Figure 3 presents the latency and the throughput of the



system for each of the three deployments when we vary the
number of clients and the percentage of operations on the
geo-distributed queue.

As shown by figures 3(a) and 3(d), with a locality of
85%, ZooFence is close to the manually-partitioned ZooKeeper.
This happens because in both deployments most operations
occur inside a site, avoiding the cross-site communication in
most cases. The vanilla ZooKeeper deployment exhibits lower
throughput and higher latency because all queues are replicated
across all sites. Since the leader ZooKeeper propagates updates
to its followers, the inter-site communication penalty cannot
be avoided.

When locality is maximum, ZooFence is identical to the
manually-partitioned ZooKeeper (figures 3(b) and 3(e)). The
vanilla ZooKeeper deployment performs significantly worse
because it fully replicates all znodes.

Finally, when all operations are performed on the geo-
distributed queue (figures 3(c) and 3(f)), the performance
of ZooFence becomes worse than that of the other two
deployments, both in terms of throughput and latency. This is
due to the overhead incurred by our execution mechanism for
operations on replicated znodes: the executor fetches commands
from the execution queue, delegates them to the responsible
ZooKeeper instances based on the flattening function and
forwards the result to the client.

The executor itself can become saturated and degrade
performance, in terms of both throughput and latency. In this
experiment, we used a single executor, deployed on the same
VM as the one hosting the administrative ZooKeeper. The
executor becomes saturated at around 60 operations per second,
as shown in Figure 3(c) and Figure 3(a) (only 15% of operations
go through the executor, and 15% * 400 = 60). This is mainly
due to our design choice of making ZooFence modular, on
top of ZooKeeper. This choice implies that our system does
not benefit from optimizations such as batching, which require
tighter integration. Since the executor is in a separate site, it
pays the latency penalty two times for global operations by
communicating with the ZooKeeper instances and the clients,
which limits performance.

We have performed a similar experiment for read workloads,
where conclusions are similar. ZooFence allows local reads to
exhibit low latency, and not interfere with the performance of
remote partitions.

Overall, our experiments show that ZooFence performs
close to an optimal deployment when access patterns exhibit
strong locality. ZooFence can enable even inexperienced
administrators to obtain good performance without the burden
of partitioning the state manually.

B. BookKeeper
This section presents experimental results that assess the

performance gains of ZooFence over ZooKeeper. To that end,
we compare the two systems in a cluster deployment when
supporting the BookKeeper logging service [14]. Below, we
first give a brief description of BookKeeper, then detail our
experimental protocol and comment on our results.
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Fig. 4. BookKeeper performance (from left to right, the amount of written
entries is 100, 250, 500 and 1000).

BookKeeper is a distributed system that reliably stores
streams of records. Each stream is stored in a write ahead
log, or ledger, that contains multiple entries. A ledger is
replicated at one or more dedicated storage servers, named
bookies. BookKeeper uses the ZooKeeper tree structure to
stores the metadata of the ledgers, as well as the set of available
bookies. The tree also ensures that a single client writes to a
ledger at a time. BookKeeper supports close-to-open semantics:
when writing to a ledger, a client appends new entries at a
quorum of its replicas. Changes to an open ledger are visible
to a concurrent client only when the ledger is closed.

Our experiments consist in evaluating the maximal through-
put of BookKeeper when clients concurrently open ledgers
and start appending entries to them. In all our experiments,
we employ 18 bookies with a replication factor of 3. Such a
setting ensures that the system can sustain the failure of one
bookie without interruption. We vary both the length of an
entry and the frequency at which clients create a new ledger.
This last parameter is controlled by the number of entries each
client writes to a ledger before closing it.

Figures 4(a) and 4(b) present a detailed performance com-
parison of BookKeeper when using ZooKeeper and ZooFence.
We vary the length of an entry from 128 to 2048 bits, and the
number of written entries from 100 to 1000. In both figures,
Zk stands for ZooKeeper, while Zf means ZooFence; the
throughput is measured as the total amount of operations per
second. When clients write 1000 entries (or more, not shown on
the plots), the two systems achieve close performance. In such
a case, the throughput is limited by either the bookies or the
network. During our experiments, the MTU is set to 1500 bytes.
This explains the performance gap between large and small
entries. On the other hand, when clients open concurrently more



ledgers, fast operations on the metadata storage matter. In such a
case, because ZooFence provides parallel accesses to the shared
tree, it outperforms ZooKeeper. The difference increases as
clients access new ledgers more frequently. In our experiments,
ZooFence improves the throughput of BookKeeper by up to
45%.

VI. RELATED WORK

Coordination services find their roots in pioneering works
on locks and synchronization primitives [15]. The need for
coordination spreads over multiple areas, from distributed
databases [16], file stores [17], multicore systems [18] and
Cloud computing [19].

Several paradigms exist for coordinating distributed pro-
cesses in the Cloud. Microsoft Azure [20] exports a common
lock interface. Clients of Google Chubby [21] make use of a
lease mechanism to gain exclusive access to a shared resource.
The API of Apache ZooKeeper [4] consists in a concurrent
tree data structure, close to UNIX filesystems. All these three
systems back-up committed operations in a replay log. The
Corfu system [22] implements an atomic log on top of dedicated
hardware. With Tango [23], developers have access to any type
of strongly consistent in-memory object, e.g., queue, map. Each
Tango object is backed by the Corfu log.

Coordination is closely related to dependability. Indeed,
redundancy is the usual mean to mask failures, but replicas of
a service need to coordinate in order to implement a consistent
service execution. State machine replication (SMR) is the
seminal approach [24] to build dependable distributed services.
It allows a set of replicas to agree on the order in which
they execute service operations. SMR relies on a consensus
algorithm, e.g., Paxos [25], and this approach is at heart of
the Cloud systems we reviewed above. Several recent works
(e.g., [26, 27]) observe that there is no need to order commuting
service operations. This observation was used recently to build
a distributed database system [28].

The seminal CAP result [29] states that a system cannot be
at the same time responsive, consistent and robust to network
outages. In the same vein as the SMR approach, ZooFence
favors consistency over availability. This means that availability
can be forfeited in the presence of network faults. For instance,
if one of the ZooKeeper instances implementing ZooFence
cannot progress, commands accessing the data it replicates are
frozen until the instance come-back.

The virtual synchrony paradigm [30] is close, but slightly
different from SMR. Under this paradigm, distributed processes
execute a sequence of views, agreeing in each view upon the
participants and the set of received messages (but not on their
order). Virtual synchrony is used to build the ISIS middleware
and its successors [31].

Some approaches [32, 33] leverage application semantics to
compute dependencies among commands in order to parallelize
SMR. Commands are assigned to groups such that commands
within a group are unlikely to interfere with each other. Eve [33]
allows replicas to execute commands from different groups
in parallel, verifies if replicas can reach agreement on state

and output, and rolls back replicas if necessary. Parallel State-
Machine Replication (P-SMR) [32] proposes to parallelize both
the execution and the delivery of commands by using several
multicast groups that partially order commands across replicas.
These two techniques aim at speeding-up the execution of
commands at each replica by enabling parallel execution of
commands on multi-core systems. Our approach is orthogonal
to this body of work. It improves performance by enabling
different replicated state machines to execute commands in
parallel without agreement.

Marandi et al. [3] employ Multi-Ring Paxos to implement
consistent accesses to disjoint parts of a shared data structure.
However, by construction, if an invariant is maintained between
two or more partitions, the approach requires that a process
receives all the messages addressed to the groups, defeating
the purpose of DAP. Oster et al. [34] and Preguiça et al. [35]
construct a shared tree in a purely asynchronous system under
strong eventual consistency. In both cases however, the tree
structure is replicated at all replicas.

Concurrently to our work, Bezerra et al. [36] have described
recently an approach to partition a shared service. To execute
a command, the client multicasts it to the partitions in charge
of the state variables read or updated by that command.
Each partition executes its part of the command, waiting (if
necessary) for the results of other partitions. In comparison to
our approach, this solution(i) does not take into account the
application semantics implying in some cases an unnecessary
convoy effect, and (ii) it requires to approximate in advance the
range of partitions touched by the command. In the ZooKeeper
use case (Volery), P-SMR stores the tree at all replicas and
commands modifying the structure of the tree (create and
delete) are sent to all replicas. In contrast, ZooFence exploits
application semantics to split the tree into overlapping sub-trees,
one stored at each partition.

The transactional paradigm is a natural candidate to partition
a concurrent tree (e.g., [37]). In ZooFence, there is no need for
transactional semantics because the implementation of the tree
is hierarchical. A transactional history is serializable when its
serialization graph is acyclic [16]. Theorem 2 can be viewed
as the characterization of strictly serializable histories over
abstract operations.

Ellen et al. [38] prove that no universal construction can be
both DAP and wait-free in the case where the implemented
shared object can grow arbitrarily. We pragmatically sidestep
this impossibility result in our algorithms by bounding the size
of the partition.

VII. CONCLUSION

This paper presents ZooFence, a system that automatically
partitions ZooKeeper. ZooFence reduces contention and in-
creases the overall throughput of applications using ZooKeeper,
especially in geo-distributed scenarios. This system is based
on a principled approach to partition a distributed service that
we present in detail. We assess the practicability of a prototype
implementation of ZooFence on two benchmarks: a concurrent
queue service and the BookKeeper distributed logging engine.



Our experiments show that when locality is optimum, ZooFence
improves ZooKeeper performance by almost one order of
magnitude.
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APPENDIX

A. Proof of Theorems 1 and 2
Theorem. Consider a service S and a partition (Sk)k of S.
If both

Q
k Statesk = States, and Cmd =

S
k Cmdk hold

then (Sk)k is a consistent partition of S.

Proof: Let h be a linearizable history of (Sk)k. For each
part Sk, history h|Sk is linearizable. Thus, there exists per
Sk a history h0

k completing h|Sk and a sequential history lk
equivalent to h0

k such that lk is legal for Sk and <h0
k✓<lk

holds.
Name < the transitive closure of the union of (

S
k <lk)

and <h. For the sake of contradiction, assume that < is not a
partial order over the commands in h. It follows that for some
commands c1, . . . , cn>2, we have a cycle c1 < . . . < cn < c1.
Clearly, we cannot have in this cycle neither only orders <h,
nor at most one order <h. Thus, consider some i for which we
have ci�1[n+1] <h ci <lk ci+1[n+1] <h ci+2[n+1]. Necessarily,
ci+1 does not precede ci in h. From which it follows (in a
global time model) that ci�1 <h ci+2 holds. By applying this
reduction, we conclude that there exists a cycle with only one
order <h; a contradiction.

We append to h all the responses that are in the histories
h0

k and not in h to form H . Since (Sk)k is a partition of S,
H is a history of S. Moreover, every command c is complete
in H as it was complete in some h0

k.
We concatenate the commands in (lk)k in the order <

to form L. By definition of <, we have <H✓<L. His-
tory L is by construction sequential. Then, consider that
a transition from s = (s1, . . . , sn) to s0 = (s01, . . . , s0n)
occurs in L for some command c 2 Cmdk with a re-
sponse value val . Since (Sk)k is strict, we have ⌧(s, c) =
((s1, . . . , ⌧k(sk, c).st , . . . , sn), ⌧k(sk, c).val) = (s0, val). This
leads to (s, c, val , s0) 2 ⌧ . As a consequence, the history L is
legal. It follows that L is a linearization of H .

Theorem. A partition (Sk)k of a service S is consistent if for
every history h of (Sk)k, there exists some linearization l of
h such that the semantic graph of S induced by l is acyclic.

Proof: Let us assume the existence of some history l such
that(i) for every Sk, history l|Sk is a linearization of h|Sk,
and (ii) the semantic graph Gl = (V,E) of S induced by l is
acyclic. We have to show that there exists some linearizable
history H of S such that H is a high-level view of h.

First, let us define the following mapping F from h to
a set of invocation and response events: Given a command
c = hc1, . . . , cmi that appears in h, we map every event e
regarding the sub-commands of c, except res(cm), via F to
inv(c). Provided that the event res(cm) exists in h, we map it
via F to res(c). Then, we consider the following relation ⌧
on the image of h via F;

e ⌧ e0 = (9(c, d) 2 E : e = inv(c) ^ e0 = inv(d))
_ (F�1(e) <h F�1(e0))

Clearly, ⌧⇤ is a partial order on F(h). Hence, we can define
H as the concatenation of the invocations and response events

in F(h) following some topological order compatible with ⌧⇤.
By construction, H is a higher-level view of h. Moreover, since
(Sk)k is a partition of S, H is a history of S.

Second, we append to h all the responses that are in l and
not in h to form h0. Since for every Sk, history l|Sk is a
linearization of h|Sk, every sub-command in l is complete.
As a consequence, history h0 completes history h. Then,
following some order compatible with E, for every command c
incomplete in h0, we append to h0 some sequential execution of
the sub-commands in c missing in h0. Following the algorithm
we employed to construct H , we then build H 0 based on h0.
By construction, H 0 completes H .

Now, let us choose L as some sequential history equivalent
to H 0 and satisfying <H0✓<L. We argue by induction that
L is legal for the service S. Consider some command c =
hc1, . . . cmi returning in L a value val , and assume that L|<c

is legal. Note s = (s1, . . . , sn) the final state of S in L|<c.
Without lack of generality, we assume that m = |(Sk)k| and
that every sub-command ck executes on a distinct Sk. We have
to show that(i) for every k, denoting ŝk the state of Sk in
l|Sk before the execution of ck, we have ŝk = sk, as well
as, (ii) val is the response returned by cm in l. We observe
that (ii) holds by definition of F. Then for (i), let dk be the
sub-command of some command d preceding c in L that
produces sk. Observe that for every command ek such that
dk <l|Sk

ek <l|Sk
ck, because <L is compatible with the order

E, dk and ek commute. From which we deduce that ŝk = sk.

B. Correctness of Algorithm 2 and Algorithm 3
In this section, we sketch a correctness proof of Algo-

rithms 2 and 3. To that end, we consider some partition (Sk)k
of a service S. First of all, we observe that since for every
part Sk, M(Sk) is a linearizable implementation of Sk, all our
constructions are linearizable implementation of (Sk)k. In the
case where |M(Sk)| > 1, this follows from the idempotency of
sub-commands and the fact that we apply each sub-command
ci in some canonical order at all the replicated state machines
in M(Sk) before returning the response of ci.

Algorithm 2. First of all, consider that some client p
executes a command c. Since p registers at line 8, by the
properties of the leader election service ⌦, eventually some
correct client process q executes lines 15 to 20 for command c.
Then, since every replicated state machine M(Sk) is wait-free,
all the sub-commands of c returns. It follows that eventually
p returns from its invocation of c. Besides, we observe that
the preconditions at line 15 implies that if two commands are
concurrently executed in some execution of Algorithm 2, they
must be commuting. As a consequence, the semantics graph
produced by any execution of Algorithm 2 is acyclic. Applying
Theorem 2, we conclude that the partition implemented by
Algorithm 2 is consistent.

Algorithm 3. Consider some linearization l of an history h
produced by Algorithm 3. At first glance, assume that any two
commands of S executed in l are commuting. It follows that
the semantic graph induced by l is acyclic, and we may apply



Theorem 2. Then, assume for the sake of contradiction that
Gl contains a cycle C of non-commuting commands. We note
(Sk0)k0 the restriction of (Sk)k to the parts appearing in cycle
C. Then, we consider the two following cases depending on
whether property P1 or P2 holds:
(P1.) Consider a sub-command ci applying on part Si such

that Si is the smallest part for the order ⌧ over the parts
(Sk0)k0 , and ci creates an order (d, c) or (c, d) in Gl.
(Case (d, c).) The sub-command ci is preceded by some

di with d 2 C in l. By definition of ci, every sub-
command preceding ci in c commutes with all the sub-
commands of the commands in C. Hence, by the helping
mechanism at lines 18 to 23, every sub-command dj
commutes with the sub-commands of c before ci and
is executed before ci in l. Then, since some dj is
preceded by a sub-command ej0 with e 2 C, the very
same reasoning tells us that the sub-commands of e
commute with the sub-commands before ci and that
they are executed before ci in l. Hence, by induction,
no order (c, ) occurs in C; a contradiction.

Case (c, d) This case is symmetrical to the previous one,
and thus omitted.

(P2.) Assume that both relations (c, d) and (d, e) are in Gl.
Note respectively (ci, di) and (dj , ej) the pair of sub-
commands that created them. In addition, let Si and Sj

be the parts on which respectively (ci, di) and (dj , ej) do
not commute. By property P2, we have either M(Si) ✓
M(Sj) or the converse that holds. From which it follows
that some replicated state machine linearizes ci and ej .
By applying this reasoning to the cycle Gl, we obtain the
desired contradiction.

Let us now consider that some correct client process p
executes a command c. Since no two sub-commands in c
access the same part, command c never blocks waiting for
itself at line 19 Then, consider that when executing line 19, a
client process always returns the first command that satisfies
the predicate. In such a case, a short induction on the eventual
properties of the leader election services in S together with
the fact that Gl is acyclic, tell us that every sub-command
eventually returns from its invocation. From which we deduce
that Algorithm 3 is wait-free.

Finally, we observe that if two commands c and d access the
same replicated state machine in some M(Sk), there must exist
a non-directed path in conflict graph of l. Hence, Algorithm 3
is disjoint-access parallel.

C. High-Level Specification of ZooFence
We consider a tree as an undirected graph T = (N,E) in

which any two vertices are connected by exactly one simple
path. We note n0 the root of the tree. Each node n in the tree
stores some (initially null) data n.d. As usual, we make no
distinction between a node and the unique path starting from
n0 that reaches it. For some path p, we note parent(p) the
parent of p, and given two paths p and p0, we write p v p0

when p prefixes p0. Clients manipulate the tree through the
following interface:

• exist(x) return true iff x is in T .
• getChildren(x) returns the children of x in T .
• create(x): if parent(x) exists in T , add x as a child of
parent(x) and returns true; otherwise false is returned.

• delete(x): if x has no children then deletes it from T
and returns true; otherwise returns false .

• update(x, d): if node x exists in T , updates its content
with data d and returns true; otherwise false is returned.

To partition the above interface, we need to satisfy property
P2. We translate this as the fact that if p v p0 then M(p0) ✓
M(p). Multiple mappings are possible, and as pointed out in
Section IV, such a choice is application-dependent. For instance,
let ,� 2 N be some flattening parameters. We define M(n0)
as the set of all the replicated state machines. Then, for every
path p of length |p|, if |p| 6= 0 [], we remove deterministically
� replicated state machines from Mparent(p); otherwise we
let M(p) equals M(parent(p)).

Based on the above assignment of nodes to replicated state
machines, we then partition the tree as follows: Each replicated
state machine implements a shared tree that exposes the very
same interface as the one we described above. Commands at
the client level are implemented by the following sequences of
commands at the replicated state machine level (underlined):

exist(x) = return M(x).exist(x)
update(x, d) = return M(x).update(x, d)

getChildren(x) = return M(x).getChildren(x)
create(x) = return M(parent(x)).create(x)
delete(x) = if M(x).getChildren(x) 6= ?

return false
M(parent(x)).delete(x)
return true
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Abstract. Modern distributed systems employ atomic read-modify-write
primitives to coordinate concurrent operations. Such primitives are typi-
cally built on top of a central server, or rely on an agreement protocol.
Both approaches provide a universal construction, that is, a general mech-
anism to construct atomic and responsive objects. These two techniques
are however known to be inherently costly. As a consequence, they may
result in bottlenecks in applications using them for coordination. In this
paper, we investigate another direction to implement a universal con-
struction. Our idea is to delegate the implementation of the universal
construction to the clients, and solely implement a distributed shared
atomic memory on the servers side. The construction we propose is
obstruction-free. It can be implemented in a purely asynchronous manner,
and it does not assume the knowledge of the participants. It is built on
top of grafarius and racing objects, two novel shared abstractions that
we introduce in detail. To assess the benefits of our approach, we present
a prototype implementation on top of the Cassandra data store, and
compare it empirically to the Zookeeper coordination service.

1 Introduction

The management of conflicting accesses to shared data plays a key role in
executing correctly and efficiently distributed applications. In general, strongly
consistent operations on shared data are serialized either through a central server,
or using the replicated state machine approach (e.g., with the Paxos consensus
protocol [1]). These two techniques implement a wait-free universal construction,
that is, a general mechanism to obtain responsive atomic objects [2]. It is however
well-established that these two mechanisms are costly. This comes from the fact
that in both cases a server serializes all updates emitted by the clients, creating
a potential bottleneck in the system. Furthermore, central servers require human
intervention to be constantly operational, and replicated state machines are
known to be difficult to deploy and maintain.

In this paper, we propose to delegate the logic of strongly consistent operations
to the client side, and to replace the central server/replicated state machine by a
distributed shared memory. The resulting universal construction is dependable,
while being conceptually simpler than state-machine-replication. Similar in spirit
to [3, 4], or more recently [5], we aim at bridging the gap that exists in practice



between shared memory literature on universal constructions and their counter-
parts in distributed systems. Our approach is nonetheless different as we do not
rely on a shared log to order all accesses, but instead make use of a distinct set
of registers to implement each object used by the application. This leverages the
intrinsic parallelism of the workload.

To achieve this, our first contribution is an obstruction-free universal construc-
tion on top of an asynchronous distributed shared memory that works even if the
participants are unknown. We base our construction on two novel abstractions:
a grafarius and a racing. A grafarius is close to the more common notion of
ratifier, or adopt-commit object [6, 7]. A racing object encapsulates the behavior
of algorithms that repeatedly access new objects to progress. By combining these
two abstractions, we devise an obstruction-free universal construction whose time
complexity is optimal during contention-free executions.

Our previous solution makes use of an unbounded amount of memory to
store the state of the object it implements. We solve this problem with a sec-
ond contribution, in the form of a novel memory management mechanism. We
formalize the notion of recycled objects then propose a mechanism to recycle
all the base objects of our previous implementation. In a distributed system,
the time complexity of the resulting universal construction during uncontended
executions is constant, and it uses O(k2) shared registers, where k is the amount
of processes that actually access the construction.

Our third contribution is a practical assessment of this approach. We present
a prototype implementation on top of the Cassandra distributed data store [8]
which we compare to Zookeeper, a state-of-the-art coordination service [9]. Several
empirical results show that our system achieves results comparable to Zookeeper
when clients rarely contend on shared objects, and that in addition, it exhibits a
good scalability factor. For instance, with 12 servers and when the workload is
completely parallel, our system is as dependable as a 3 servers deployment of
Zookeeper, while being 3.2 times faster. This last property comes from the fact
that our approach exhibits no bottleneck. Thus, the more it scales-out, the more
likely operations that access distinct objects execute in parallel on the servers,
improving performance.

Paper Outline. Section 2 surveys related work. In Section 3, we introduce
the notions of grafarius and racing objects, and we present our first universal
construction. We refine this construction to bound its memory footprint in
Section 4. Section 5 describes a prototype implementation of our algorithm on
top of Cassandra, and we evaluate it against Zookeeper. We close in Section 6.
For the sake of clarity, all the proofs are deferred to the appendix.

2 Related Work

Our work deals with the problem of transforming a sequential object into a
concurrent strongly-consistent one. Such a mechanism is named in literature a
universal construction. At core of this construction is consensus, an abstraction
with which processes agree on the next state of the concurrent object. In a
distributed system, the classical approach to implement consensus is the Paxos



algorithm [1]. Due to the impossibility result of Fischer et al. [10], Paxos is
indulgent [11]. This means that Paxos guarantees safety at all times but provides
progress only under favorable circumstances. The alpha of consensus [12] captures
the indulgent part of Paxos. This notion is close to the ranked-register object [13]
which models the Disk Paxos algorithm of Gafni and Lamport [4].

Processes executing Paxos iteratively calls the alpha abstraction with a
tuple (k, v), where k is a round number and v some (appropriately chosen)
proposal value. Each such call translates the execution of a round in the original
algorithm of Lamport [1]. A ratifier, or adopt-commit, object [6] is a one-shot
object encapsulating the safety property of a round. Hence, from a high-level
perspective, the alpha of consensus can be seen as successive (consistent) calls
to adopt-commit objects (see [7] or [14, Fig.5]). In Section 3.3, we present the
racing object that allows abstracting such iterative calls.

When there is no assumption on the proposed values, the result of Aspnes and
Ellen [15] tells us that the solo time complexity of an adopt-commit belongs to
⌦
�p

log n/ log log n
�
. Surprisingly, some consensus algorithms exhibit constant

solo decision time (e.g., [16]). This difference is explained by the convergence
property of adopt-commit objects which requires processes to commit a value in
case they all propose it. In Section 3.2, we introduce the notion of grafarius object.
A grafarius can be seen as an adopt-commit object with a weak convergence
property, namely a process has to commit its value only if it executes solo. As
shown in Section 3.4, we can build an obstruction-free consensus with constant
solo decision time on top of the grafarius and racing objects.

Some algorithms, e.g. [14, 16] in shared-memory, or [3–5, 13] in distributed
systems, use strong synchronization primitives to implement consensus. On the
contrary, our approach relies solely on a set of registers emulated by the underlying
distributed system. As a consequence of this choice, our universal construction is
obstruction-free. The work of Fich et al. [17] describes a practical transformation
to convert an obstruction-free algorithm into a wait-free one. Jayanti et al. [18]
proves an ⌦(n) lower bound on the solo decision time and the space complexity
of obstruction-free implementations.

During a step-contention free execution, processes do not contend on the
base objects that implement the desired abstraction. The work of Attiya et al.
[14] studies obstruction-free implementations that only make use of history-less
primitives during step-contention free executions, but might rely on stronger ones
under contention. The authors show that such implementation have ⌦(n) space
complexity, and that they exhibit ⌦(log n) time complexity in step-contention
free executions.

The time complexity of the wait-free universal construction of Herlihy [2] is
O(n). Jayanti and Toueg [19] propose a variation of this construction which does
not use unbounded integers. The space complexity of this last algorithm is O(n2

).
Attiya et al. [14] present an obstruction-free universal construction that employs
an unbounded amount of memory. In Section 4.3, we describe a space-bounded
universal construction that works in the case where processes participating to
the construction are unknown. In a distributed system, it makes use of O(k2)



registers, where k is the amount of processes that actually access the construction.
To achieve this, we present a novel recycling mechanism in Section 4.2. At core
of our mechanism is the observation that properly recycled grafarius objects can
be concurrently accessed in different rounds.

3 The Construction

This section first introduces our system model. Then, it details the grafarius
and the racing objects. Based on these two abstractions, we further depict a
consensus algorithm that exhibits a constant time complexity in the contention-
free case. This algorithm is our core building block to obtain an efficient universal
construction. All the objects we present hereafter are depicted in the asynchronous
shared-memory model, and they all support a bounded yet unknown amount of
processes. These two assumptions reflect the message-passing system we target.

3.1 System Model & Notations

We consider an asynchronous message-passing system characterized by a com-
plete communication graph where both communication and computation are
asynchronous. Processes take their identities from some bounded set ⇧, with
n = |⇧|. The set ⇧ is not accessible to processes for computation, but they may
execute operations on the identities (e.g., equality tests).

During an execution, a process can fail-stop by crashing, but we assume
that at most dn

2 e � 1 such failures occur. There exists an implementation of
an asynchronous shared-memory (ASM) under such an assumption [20, 21].
Consequently, we shall write all our algorithms in the ASM model where pro-
cesses communicate by reading and writing to atomic multi-writer multi-reader
(MWMR) registers.

In what follows, we detail how to implement higher level abstractions using
the shared registers. Most of the objects we describe in this paper are lineariz-
able [22]. An object is one-shot when a process may call one of its operations at
most once. When there is no limit to the number of times a process may invoke
the object’s operations, the object is long lived. Besides, we shall be considering
the following two progress conditions on the invocations and responses of opera-
tions [23]:(Obstruction-freedom) if at some point in time a process runs solo then
eventually it returns from the invocation; and (Wait-freedom) a process returns
from the invocation after a bounded number of steps.

In this paper, we are most interested in executions where processes rarely
contend on shared objects. The canonical case of such an execution is the solo
execution in which a single process executes computational steps. This class
of execution is appropriate for one-shot objects but we need extending it for
long-lived ones. To that end, we define the notion of contention-free execution
that is an execution during which calls to the implemented shared object do not
interleave. The contention-free time complexity of an algorithm is the worst case
number of steps made by a process during such executions.



Algorithm 1 Grafarius – code at process p
1: Shared Variables:

2: s // A splitter object

3: c // Initially, false

4: d // Initially, ?
5:
6: adoptCommit(u) :=

7: if ¬ s.split() then

8: c true

9: if d 6= ? then

10: return (adopt, d)

11: d u

12: return (adopt, u)

13: d u

14: if c then

15: return (adopt, u)

16: return (commit, u)

3.2 Grafarius
The first abstraction we employ in our construction is a shared object named
grafarius. A grafarius is a one-shot object defined on a domain of values V. It
exports a single operation adoptCommit(u 2 V) that returns a pair (flag , v), with
flag 2 {adopt , commit} and v 2 V. During every history of a grafarius, and for
every process p that invokes adoptCommit(u), the following properties are satis-
fied:(Validity) If p adopts v, some process invoked the operation adoptCommit(v)
before. (Coherence) If p commits v, every process either adopts or commits v.
(Solo Convergence) If p returns from its invocation before any other process
invokes adoptCommit then p commits u. (Continuation) If some process returns
before p invokes adoptCommit , p adopts or commits a value proposed before it
invokes adoptCommit .

The grafarius is closely related to the notion of adopt-commit object in-
troduced by Gafni [6]. Nevertheless, the two abstractions are not comparable.
On the one hand, the solo convergence property of a grafarius is weaker than
the convergence property of an adopt-commit object. This avoids the lower
bound ⌦

�p
log n/ log log n

�
on the time complexity to execute adoptCommit

in ASM [15], while being sufficient to implement obstruction-free consensus.
On the other hand, an adopt-commit object does not satisfy the continuation
property, meaning that a process can return a value (u, adopt) despite that such
invocation follows a call which returned (v, adopt). The continuation property
improves convergence speed under contention. This also makes the grafarius a
decidable object, which is needed by our memory management schema. We give
further details regarding this last point in Section 4.

Algorithm 1 depicts a wait-free implementation of a grafarius. This algorithm
makes use of a splitter object that detects a collision when two processes concur-
rently access the shared object. We first remind below how a splitter works, then
we detail the internals of Algorithm 1.

The splitter object was first introduced by Lamport [24] then later formalized
by Moir and Anderson [25]. A splitter is a one-shot shared object that exposes a
single operation: split(). This operation takes no parameter and returns a value in



Algorithm 2 Racing on L – code at process p
1: Shared Variables:

2: L // A map from ⇧ to N, initially ?
3:
4: Local Variables:

5: F // A function from N to L
6: last // Initially, 0

7:
8: enter() :=

9: L[p] last

10: S  codomain(L)
11: let m = max(S)
12: if last = m then

13: last  m + 1
14: else

15: last  m

16: return F(last)

{true, false}.1 When a process returns true, we shall say that it wins the splitter;
otherwise it loses the splitter. When multiple processes call split(), at most one
receives the value true, and if a single process calls split(), this call returns true.
Furthermore, when a process calls split() after some other process returned, it
necessarily loses the splitter. A splitter is implementable in a wait-free manner
with atomic MWMR registers (see [25, Fig. 2] for further details).

Algorithm 1 works as follows. Upon calling adoptCommit(u), a process p tries
to win the splitter (line 7). If p fails, it raises the flag c to record that a collision
occurred, i.e., the fact that two processes concurrently attempted to commit a
value. Then, in case a decision was recorded, p adopts it; otherwise p adopts it
own value (lines 9 to 12). On the other hand, if p wins the splitter, it writes its
proposal u to the register d. Then, process p commits u if it detects no conflict,
otherwise p adopts it (lines 14 to 16).

3.3 Notion of Racing

Many algorithms (e.g., [3, 26]) repeatedly access new objects to progress. A
racing is a long-lived object that captures such an iterative pattern. Its interface
consists of a single operation enter(p, l), defined on a countably infinite domain L
of laps. During a history h, a process p enters lap l when enter(p, l) occurs in h.
Process p leaves lap l when l is the last lap entered by p and p enters a new one.
The following invariant holds during every history of a racing:(Ordering) There
exists a strict total order ⌧

h

on the set of entered laps in h such that for every
process p that enters some lap l, either(i) some process left l before p enters it,
or (ii) the last lap left by p is the greatest lap smaller than l for the order ⌧

h

.
Let us consider an unbounded counter c at each process, and an indexing

function F from N to L. Whenever a process p enters a new lap, suppose that
p increments c and then returns the object F (c). This simple local algorithm
implements a linearizable racing. However, because this construction does not

1 A splitter is generally defined with the returned values {L, S,R}. Here, we make no
distinction between L and R.



Algorithm 3 Consensus – code at process p
1: Shared Variables:

2: R // A racing on grafarius objects

3: d // Initially, ?
4:
5: propose(u) :=

6: while true do

7: if d 6= ? then

8: return d

9: o R.enter()
10: (f, u) o.adoptCommit(u)
11: if f = commit then

12: d u

bound the amount of laps a process has to retrieve before knowing the most
recent one, it might be expensive when contention occurs.

Algorithm 2 presents a more efficient approach that allows a process to skip
the laps it missed. This algorithm makes use of an initially empty shared map L
from ⇧ to N. We map x to the value y via L when writing L[x] y; operation
codomain(L) returns the codomain of L. For some process p, the local variable
last stores the index of the last lap entered by p. When it calls enter(), process
p stores the last index in L (line 9). Then, p retrieves the content of L and
computes the maximum element m in its codomain. Process p assigns m+ 1 to
last , if last = m holds, and m otherwise (lines 12 to 15). The value of F (last) is
then returned as the result of the call.

Time Complexity. The adaptive collect object of Attiya et al. [27] can
implement the shared map L used in Algorithm 2, without having the knowledge
of ⇧. In such a case, the time complexity of Algorithm 2 is O(k), where k  n
denotes the amount of processes that actually access the racing object.

3.4 Racing-based Consensus

Using the racing abstraction introduced in the previous section, we now depict an
obstruction-free implementation of consensus. Recall that consensus is a shared
object whose interface consists of a single method propose. This method takes as
input a value from some set V and returns a value in V ensuring both (Validity) if
v is returned then some process invoked propose(v) previously, and (Agreement)
two processes always return the same value.

Algorithm 3 describes our implementation of consensus. In this algorithm,
processes compete on two shared abstractions: a racing R on grafarius objects,
and a decision register d. When a process p suggests a value u for consensus, it
attempts to commit u by entering the next grafarius object in R (line 9). Every
time p executes adoptCommit on a grafarius object o, p updates its proposed
value with the response returned by o (line 10). In case the grafarius returns
a committed value, this value is stored in d as the result of the call to propose
(lines 11 and 12).

Time complexity. The call to the splitter object in Algorithm 1 requires four
computational steps [25]. Besides, the solo time complexity of the adaptive collect
object of Attiya et al. [27] belongs to O(1). It follows that Algorithm 3 solves



Algorithm 4 Universal Construction – code at process p
1: Shared Variables:

2: R // A racing on consensus objects

3:
4: Local Variables:

5: C // Initially, R.enter()
6: s // Initially, s

0

7:
8: invoke(op) :=

9: while true do

10: d C.d

11: if d 6= ? then

12: s d[1]
13: C  R.enter()
14: else

15: (s0, v) ⌧(s, op)
16: if s = s

0
then

17: return v

18: d C.propose((p, s0))
19: if d[0] = p then

20: return v

consensus in O(1) steps during solo executions. This fast resolution of consensus
allows us to implement a universal construction with a linear time complexity
when no contention occurs. We detail our approach in the next section.

3.5 A Fast Obstruction-free Universal Construction
A universal construction is a general mechanism to obtain linearizable shared
objects from sequential ones. A sequential object is specified by some serial data
type that defines its possible states as well as its access operations. Formally, a
serial data type is an automaton defined bya set of states (States), an initial
state (s

0

2 States), a set of operations (Op), a set of response values (Values),
and a transition relation (⌧ : States ⇥ Op ! States ⇥ Values). Hereafter, and
without lack of generality, we shall assume that every operation op is total, i.e.,
States⇥ {op} is in the domain of ⌧ .

Algorithm 4 depicts our obstruction-free linearizable universal construction.
The algorithm uses a single shared variable: a racing on obstruction-free consensus
objects named R. When a process p invokes an operation via invoke(op), p first
checks the decision of the latest consensus object it entered (line 11). If a decision
was taken, p updates its local variable s with the new state of the object. Then, p
enters the next consensus (lines 12 to 13). Once p reaches the last consensus that
was decided, variable s stores a state of the object that is older than the time at
which p invoked op. At this point, process p executes tentatively the operation on
s and stores the result in the pair (s0, v). When s equals s0, the invocation does
not change the result of the object and p can immediately returns v. Otherwise,
p proposes the pair (p, s0) to change the state of the object to s0. If it successes,
process p returns the response v (lines 19 and 20).

Time complexity. As pointed out previously, the case we consider to be
the most frequent one is the contention-free case, that is when multiple processes
access the object but interleavings do not occur. In the worst case, a process
freshly calling invoke() in a contention-free execution first retrieves the largest



decided consensus, then it enters the next consensus and decides. From our
previous time complexity analysis of Algorithms 2 and 3 and the lower bound
result of Jayanti et al. [18], the contention-free time complexity of Algorithm 4 is
optimal and belongs to ⇥(k).

4 Managing Memory Usage

Every time the state of the object implemented by the universal construction
changes, Algorithm 4 accesses a new consensus instance. This implies that the
number of consensus instances is not bounded and may rapidly exhaust available
memory. In this section, we present a novel recycling technique that addresses
this problem. To that end, we first introduce several definitions that capture the
notion of recycled objects. Then, we depict a mechanism to recycle the objects
used in Algorithm 4.

4.1 Preliminary Notions
Intuitively, every time an object is reused, it should behave according to its
specification. We formalize this idea in the definitions that follow.

Definition 1 (Round & Decomposition). Given some history h, a round r
of h is a sub-history of h such that every invocation complete in h is complete
in r. A decomposition of h is an ordered set of rounds {r1. . . . .rm�1} satisfying
h = r1. . . . .rm.

Definition 2 (Recycled Object). Consider a history h of some object o. We
say that o is a recycled object of type T during h, when there exists a decomposition
of h such that every round r in this decomposition is a correct history for an
object of type T.

In order to illustrate these definitions, let us consider two processes p and
q, and a shared object o exporting an operation op. We can decompose history
h1 = inv

p,1(op).invq,1(op).resq,1(op)u.resp,1(op)v.invp,2(op) in rounds r1 =

inv
p,1(op).invq,1(op).resq,1(op)u.resp,1(op)v and r2 = inv

p,2(op). However, if
we consider that op = propose and u 6= v, there is no decomposition of h1 for
which o is a recycled consensus object.

The usual approach to recycle an object is to reset all its fields once the
processes have stopped accessing it, that is once all the operations pending in a
round have completed. The universal construction of Herlihy [2] implements this
idea by provisioning for each process O(n2

) cells, each cell storing the state of
the implemented object. An array of O(n) bits associated to each cell indicates
when it can be reset by its owner.

Since the participants to the universal construction are unknown in our
context, we cannot employ the previous approach. Instead, we propose to recycle
the objects used in Algorithm 4 by signing each modification with the round at
which it occurs. An operation that updates such an object will be oblivious to
modifications made in prior rounds. If now the operation is in late, that is when
a new round has started before it returns, the operation will observe the object
in a state consistent with one of the rounds to which it is concurrent. We develop
this idea in the next section, then apply it to Algorithm 4.



4.2 Recycling Objects

As a starter, let us remind the definition of a decidable object. This category
of objects contains consensus, but also the splitter and the grafarius objects we
described in Section 3.

Definition 3 (Decidable Object). A decidable object o is a shared object
whose state contains a decision register d taking its value in some set V, the
domain of o, union ? /2 V, and which initially equals ?. The object is said
decided when d 2 V holds. For every operation op of o, once o is decided, there
exists some deterministic function f of d such that f(d) is a valid response value
for op.

As an example of the previous definition, let us consider a grafarius object.
We observe that when the decision register d does not equal ?, the pair (adopt , d)
is a sound response for the call adoptCommit .

The first step of our recycling mechanism consists in recycling the MWMR
registers that form the basic building blocks of our algorithms. We detail it
below.

(Construction 1) Let (T , <) be a set of timestamps totally ordered by some
relation < and containing a smallest element 0 2 T . For every register x
having some initial state s

0

, we initialize x to (0, s
0

). Then, consider some
timestamp t. When a value v is written to x, we write (t, v) to x. Now, upon
reading from x, the value returned is the value u in case x contains (t0, u)
with t  t0, and s

0

otherwise.

In a second step, we extend this technique to decidable objects as follows.

(Construction 2) For some decidable object o, a call to recycle(o, t) returns a
copy of o such that upon a call to an operation op of o,(i) if the object is
decided then we return f(d), and otherwise (ii) op is executed but read and
write operations on the shared registers that implement o are replaced by
the steps described in Construction 1 using timestamp t.

For some decidable object o, we shall write recycle(o) the object obtained by
proxying every call to the operations of o by corresponding calls to recycle(o, t)
for some timestamp t. Proposition 1 establishes that, provided the timestamps
are appropriate, recycle(o) implements a recycled object of the same type as o.

Proposition 1. Consider a decidable object o of type T and some history h of
recycle(o) during which the following invariant holds:
(P1) For any pair of operations op and op0, executed respectively on recycle(o, t)

and recycle(o, t0) in h, if op0 does not precede op in h and t0 < t holds, there
exists an operation on recycle(o, t0) that precedes op0 in h and writes to the
decision register d of o.

Then, recycle(o) implements a recycled object of type T during history h.



Algorithm 5 Universal Construction – code at process p
1: Shared Variables:

2: L // A map from ⇧ to N, initially ?
3:
4: Local Variables:

5: F // A function from N to consensus objects

6: s // Initially, s

0

7: last // Initially, 0
8: ts // Initially, 0
9: C // Initially, enter()
10:
11: invoke(op) :=

12: while true do

13: d C.d

14: if d 6= ? then

15: (s, last, ts) (d[1], d[2], d[3])
16: C  enter()
17: else

18: (s0, v) ⌧(s, op)
19: if s = s

0
then

20: return v

21: d C.propose((p, s0, free(), ts + 1))
22: if d[0] = p then

23: return v

24: function free() :=

25: S  codomain(L)
26: let (�,� ) = (min(S),max(S))
27: if � > 0 then

28: return � � 1

29: return � + 1

30: function enter() :=

31: L[p] last

32: return recycle(F(last), ts)

4.3 Application

Algorithm 5 depicts our second obstruction-free universal construction. In compar-
ison to Algorithm 4, we introduce two modifications:(i) processes now compete to
decide which consensus will store the next state of the object, and (ii) consensus
objects are recycled using the mechanism we presented in Construction 2.

With more details, Algorithm 5 works as follows. We implement a racing on
consensus objects with variables L and F . When an operation changes the state of
the implemented object, the calling process proposes to consensus the new state
s0 together with the index of the consensus object that will be used next and its
associated timestamp (line 21). The index is determined by a call to the function
free(). This function retrieves the codomain of L, and computes the smallest
consensus index that is not currently accessed by a process (lines 25 to 29). In
case all objects between 0 and � are busy, where � is the greatest index accessed
so far, the index � + 1 is returned.

Algorithm 5 recycles the consensus objects in the codomain of F using the
timestamping schema we introduced in Section 4.2. During an execution, for every
object recycle(o) with o 2 codomain(F ), the algorithm maintains the invariant
P1 of Proposition 1. This ensures that accesses to variables L and F implement
a racing on consensus objects, reducing Algorithm 5 to Algorithm 4.

Time & Space Complexity. The contention-free time complexity of Algo-
rithm 5 is the same as for Algorithm 4, i.e., it belongs to ⇥(k) in ASM. From the
code of function free(), Algorithm 5 employs at most k+1 consensus objects. In a
distributed system, a quorum system can implement a collect object by emulating
O(k) shared registers. It results that in such a model the contention-free time
complexity of Algorithm 5 measured in message delay is O(1), and that its space
complexity belongs to O(k2).



5 Empirical Assessment

To assess the practicability of our approach, we evaluate in this section a prototype
implementation of Algorithm 5. This implementation is built on top of the Apache
Cassandra distributed data store [8] which provides a distributed shared memory
using consistent hashing and quorums of configurable sizes. In what follows,
we describe the internals of our implementation then detail its performance in
comparison to the Apache Zookeeper coordination service [9]. For the sake of
reproducibility, the source code of our implementation as well as the scripts we
run during the experiments are publicly available [28].

5.1 Implementation Details
Cassandra offers a data model close to the classical relational model at core of
the database systems. The smallest data unit in Cassandra is a column, a tuple
that contains a name, a value and a timestamp. Columns are grouped by rows,
and a column family contains a set of rows. Each row is indexed by a key, and
stored at a quorum of replicas (following a consistent hashing strategy). A client
can read a whole row and write a column. The consistency of such operations
is tunable in Cassandra. When the cluster running Cassandra is synchronized
and both read and write operations operate on quorums, Cassandra provides an
atomic snapshot model. This storage system also supports eventually consistent
operations. When this consistency level is employed, a write operation accesses a
quorum of replicas, while a read occurs at a single replica. Cassandra reconciles
replicas via a timestamp-based mechanism in the background.

Prototype Implementation Our implementation uses the Python programming
language and it consists of the different shared objects we detailed in the pre-
vious sections (splitter, grafarius, consensus, and universal construction). The
conciseness of Python allows the whole implementation to contain around 1,000
lines of code. Our implementation closely follows the pseudo-code of the algo-
rithms. Each object corresponds to a row in a column family, and is named after
the type of the object. When an object relies on lower-level abstractions, e.g.,
consensus employs multiple grafarius objects, the objects’ keys at the low-level
are named after the key at the higher one, e.g., consensus:12:grafarius:3. By
changing the consistency of the decision register d in Algorithm 3, we can tune
the consistency of our universal construction. When d is eventually consistent,
the universal abstraction is sequentially consistent for read operations; otherwise
it is linearizable. In Zookeeper, updates are linearizable while read operations are
sequentially consistent. For that reason, when we compare the performance of
our implementation to Zookeeper during the experiments, we use the sequentially
consistent variation of our algorithm.

5.2 Evaluation
We conducted our experiments on a cluster of virtualized 8-core Xeon 2.5 Ghz
machines running Gentoo Linux, and connected with a virtualized 1 Gbps switched
network. Network performance, as measured by ping and netperf, are 0.3 ms for



a round-trip and a bandwidth of 117MB/s. Each machine is equipped with a
virtual hard-drive whose read/write (uncached) performance, as measured with
hdparm and dd, are 246/200 MB/s. A server machine runs either Cassandra or
Zookeeper. A client machine emulates multiple clients accessing concurrently the
shared objects. During an experiment, a client executes 10

4 accesses to one or
more objects. We used 1 to 20 clients machines, emulating 1 to 100 clients each,
and 3 to 12 server machines. In all our experiments, the client machines were not
a bottleneck.
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Compare-and-swap We first evaluate
in Figure 1 the performance of our
implementation when clients execute
compare-and-swap operations, and the
system is composed of 3 server machines.
Recall that a compare-and-swap object
exposes a single operation: C&S (u, v).
This operation ensures that if the old
value of the object equals u, it is re-
placed by v. In such a case, the opera-
tion returns true; otherwise it returns
false. In Figure 1, we plot the latency to execute a compare-and-swap operation
as a function of the number of clients and the arguments of the operations.
The initial state of the compare-and-swap object is 0. Each client executes in
closed-loop an operation C&S (k, l), where k and l are taken uniformly at random
from the interval J0,MJ with M some maximum value.

When the size of the interval J0,MJ shrinks, each C&S () operation is more
likely to success in transforming the state of the object; hence contention increases.
Consequently, as observed in Figure 1, performance degrades. Contention between
clients occur mainly on the splitter objects that form the building blocks of
Algorithm 1. We briefly analyze how contention is related to performance next.
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An operation C&S (u, v) is successful
when the state is changed from u to v.
Let us note ⇢ the ratio of successful oper-
ations, that is 1/M , and �

s

(respectively
�
f

) the latency to execute solo a success-
ful (resp. failed) operation. In Figure 1,
the light lines (M

app

) plot for each value
of M the curve �

f

(1�⇢)+�
s

⇢n. This is
a reasonable approximation where the
term �

s

⇢n follows Little’s law [29] and
translates the convoy effect [30] on suc-
cessful operations.

Critical section In Figure 2, we compare the performance of our implementation
to Zookeeper, when clients access a critical section (CS). Such an object is not
in line with the non-blocking approach, but it is commonly used in distributed
applications. We implemented the CS on top of our universal construction using



a back-off mechanism. For Zookeeper, we employed the recipe described in [9].
Figure 2 presents the average time a client takes to enter then leave the CS,
and we vary the inter-arrival time of clients in the critical section according to a
Poisson distribution.

We observe in Figure 2 that when the inter-arrival time is high, and thus
little contention occurs, a client accesses the CS with Zookeeper in 20 ms. For
Algorithm 5, it takes 60 ms, but the performance degrades quickly when clients
access more frequently the CS. This comes from the fact that(i) we implemented
a spinlock and thus clients are constantly accessing the system, and (ii) as pointed
out previously, when clients are competing on splitter objects, the performance
of our algorithm degrades.
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Scalability Our last set of experiment
assess the scalability of our approach.
To that end, we compute the maxi-
mal throughput of our prototype imple-
mentation when clients access different
objects, precisely C&S () for M = 10.
The amount of available server machines
varies from 3 to 12 servers. In all cases,
we implement a register with the help
of a quorum of 3 servers. We compare
our results to an instance of 3 Zookeeper
machines. Zookeeper does not implement natively a compare-and-swap operation.
We devised the following implementation relying on the versioning mechanism
exposed to the clients by Zookeeper. When a client executes C&S (u, v) it first
retrieves the value w and the attached version k of the znode identifying the
object. In case w = u, the client attempts writing v with version k + 1. If this
write fails, the client re-execute C&S (u, v). In our experiments, a single client
accesses each object. Thus it never retries and this implementation is optimal.

Figure 3 depicts the maximal throughput with 3 to 12 servers. With 3 servers,
our system deliver 18.4K op/s and ZooKeeper 12.6K op/s. The bottleneck nature
of the ZooKeeper leader which serializes all updates explains this gap. Our
prototype achieves 33K op/s when using 9 servers, and 40K op/s with 12. In this
last case, our system is 3.2 times faster than Zookeeper on 3 machines.

6 Conclusion

This paper presents a novel algorithmic solution to implement a distributed uni-
versal construction when participants are unknown. Contrary to previous works,
which mostly focus on state machine replication, our approach employs solely a
distributed asynchronous shared memory, the logic of consistent operations being
delegated to the client side. Hence, and as exemplified by our prototype, we can
implement it in a client library that runs on top of an off-the-shelf distributed
shared memory. To obtain this result, we introduce two novel shared abstractions:
a grafarius and a racing, which we believe are of interest on their own. We also
present a new mechanism to recycle the base objects at core of our construction.
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A Correctness of Algorithms 1 to 4

The two theorems that follow prove the correctness of our implementations of a
grafarius and a racing objects.

Theorem 1. Algorithm 1 implements a wait-free grafarius.

Proof. Algorithm 1 employs only wait-free shared objects. Hence, to the light of
its pseudo-code, it conserves this liveness property. Validity and solo convergence
are both immediate. To prove the continuation property, we observe that when
a process p returns from a call to adoptCommit , (i) d 6= ? holds, and (ii) if a
process q invokes adoptCommit after p returned, it loses the splitter. It remains
to show that Algorithm 1 also ensures the coherence property. To that end,
consider that in some execution ⇢ of Algorithm 1, a process p commits a value u.
Note t0 the time in ⇢ at which p executes line 14. Since p commits u, c always
equals false before t0. This implies that p wins the splitter s in ⇢. From the
properties of a splitter object, we conclude that every process, except p, that
completes its invocation in ⇢ must execute line 8. This observation and the fact
that c = false at t0 tell us that no process executes line 8 before t0. Then, observe
that p executes line 13 at some time t1 < t0. As a consequence, d = u after t0,
and every process other than p that completes its invocation in ⇢ executes line 10.
The coherence property holds in ⇢.

Theorem 2. Algorithm 2 implements a wait-free linearizable racing.

Proof. From the pseudo-code of Algorithm 2, we conclude that this algorithm
is wait-free. Then, consider a complete history h produced by the following
mapping:2 when p invokes enter() in Algorithm 2, it calls enter(p, l) in h with
l = F (last) the response value of the call, and when the call of p returns, we
append the corresponding response to h.

Let (lin, <
lin

) be the linearization of h induced by the order in which the
operations on variable L occurs in h. In more detail, if enter(p, l) and enter(q, l0)
are concurrent then we choose the order enter(p, l) <

lin

enter(q, l0) if p does not
read the value of L[q] written by q (line 9); otherwise, we choose the converse
order.

Fix ⌧
lin

as the order between the entered laps in lin induced by the indexing
function F . Assume a process p enters some lap l = F (last) in lin. We observe
that p executes either line 13 or line 15. In the first case, this implies that p has
just left F (last � 1) which is the greatest lap smaller than l in which a process
has entered during lin. In the second case, we observe that necessarily a process
left l. and moreover that this event occurs in lin before p enters l. In both cases,
the ordering property holds.

Below, we prove a key proposition characterizing algorithms that employ
a racing on decidable objects. (The notion of decidable object is recalled in
Section 4.1.)
2 All our implementations are at least obstruction-free. Thus, when proving lineariz-

ability, we can simply consider a complete history.



Proposition 2. Consider an algorithm A that accesses a racing on decidable
objects. Suppose that in A, when some process p enters a new object, the last
object left by p is decided. Then, during every execution ⇢ of A, at the time p
enters a new object o, all the objects o0 ⌧

⇢

o are decided.

Proof. By induction. The property holds clearly for the first object in the order
⌧

⇢

. Then, consider that some process p enters an object o and assume by
induction that all the objects prior to o for the order ⌧

⇢

are decided. By
property (i) of the ordering property of a racing object, we can consider without
lack of generality that p is the first process to enter o in ⇢. Then, by property
(ii), process p left previously the greatest object smaller than l for the order
⌧

⇢

; name this object o0. Applying the induction hypothesis, we know that for
every object o00 ⌧

⇢

o0, o00 is decided at that time. Moreover, before p enters o, A
ensures that o0 is decided. Hence, the property holds for o.

Based on the above proposition, we prove next that Algorithm 3 and Algo-
rithm 4 implement respectively a consensus and a universal abstraction.

Theorem 3. Algorithm 3 implements an obstruction-free linearizable consensus.

Proof. First of all, we observe that a process which starts executing solo nec-
essarily commits the value it proposes into the next grafarius it enters alone.
This is ensured by the solo convergence property. As a consequence, Algorithm 3
is obstruction-free. Besides, the validity of consensus follows from the validity
property of a grafarius.

It remains to prove that the agreement property is also satisfied. To that
end, consider a complete history h produced by an execution ⇢ of Algorithm 3 in
which some process p returns a value v. We observe that a grafarius o returned
(commit , v) before p executes line 7. Suppose then that some process q adopts, or
commits, a value u by accessing the smallest object o0 higher than o for the order
⌧

⇢

. By the ordering property of a racing, when q enters o0 either(i) process q
just left o, and by the coherence property of a grafarius, it must propose v to
o0, or (ii) a process q0 left o0 before q enters it, and by a short induction on the
continuation property of a grafarius, q must return the value v when it accesses
o0. Hence, we have u = v.

Next, let us consider that two processes p and q return respectively u and v
during h. Name o and o0 the two grafarius accessed to decide these values. (If
the call of either p or q returns at line 7, the situation boils down to this case.) If
o = o0, the coherence property of a grafarius tells us that u = v. If now o 6= o0,
we can assume without lack of generality that o ⌧

⇢

o0 holds and by induction
we also obtain that u = v. Hence, Algorithm 3 maintains the agreement property
of consensus during the history h.

Theorem 4. Algorithm 4 implements an obstruction-free linearizable universal
construction.

Proof. Variable R is a (wait-free) racing on obstruction-free consensus objects.
Thus, at the light of its pseudo-code, Algorithm 4 is obstruction-free.



We prove now that the implementation is linearizable. Consider a complete
history h produced by some execution ⇢ of Algorithm 4, and let op be some
operation in h executed by a process p. Operation op is trivial (respectively
regular) when it returns at line 17 (resp. line 20). The value of variable C on
process p at the time the operation returns is the consensus associated to op.

Note ⌧
⇢

the order induced by the racing object R on the consensus objects
associated to at least one operation. Let lin be the history produced by ordering
the operations in h according to their associated consensus such that(i) trivial
operations are ordered after the regular ones having the same associated consensus,
and (ii) we keep the order between trivial operations having the same associated
consensus. We prove below that lin is a linearization of h.

First, we show that <
h

✓<
lin

. Let op and op0 be two operations of h executed
by respectively p and q. Consider that op <

h

op0 holds, and name c and c0 their
respective associated consensus. (Case c = c0.) When the two operations have
the same associated consensus, we observe that by the agreement property of
consensus they cannot be both regular (line 18). Since the consensus c must be
decided for op to execute, the case op trivial and op0 regular is impossible Hence,
we have op regular or trivial, and op0 trivial. By the properties (i) and (ii) of
our construction of the history lin, we conclude that op <

lin

op0 holds. (Case
c ⌧

⇢

c0.) By construction, we have op <
lin

op0. (Case c0 ⌧
⇢

c.) Operation op is
associated to c. As a consequence, there exists a time t at which c.d equals ?
when the test at line 11 is executed in op. Similarly, we note t0 the time at which
c0.d equals ? in op0. Since op precedes op0 in h, it must be the case that t < t0.
But c0 ⌧

⇢

c implies by Proposition 2 that at time t0 consensus c is decided; a
contradiction.

It remains to prove that lin is a legal sequence. To that end, consider an
operation op by a process p in lin. Name v its response value, c its associated
consensus, and op0 the first regular operation that precedes op in lin. In case
op is trivial, by property (i) of our construction, op0 is the regular operation
associated to the same consensus as op. Hence, this operation sets the object to
a state s such that ⌧(s, op) = (s, v) (see lines 12, 15 and 18). Assume now that
op is regular. When p enters c at line 13, by the ordering property of a racing
object, we can consider two cases:(i) Process p has left the greatest lap smaller
than l for the order ⌧

⇢

. Then, variable s contains the state of the object after
op0 and all the operations between op0 and op are trivial. Thus, the response v is
correct. (ii) The consensus c was left by some process before p enters it. In that
case, c is decided at that time; a contradiction to the fact that op is regular.

B Proof of Proposition 1

In this section, we show that when invariant P1 holds in some complete history
h, recycle(o) is a linearizable implementation of a recycled object of type T. To
prove this statement, we construct from h a history lin decomposable in rounds,
each round of lin being a correct history for some object of type T.

Our construction of lin relies on the following distinction between the opera-
tions appearing in h: operations that write to the decision register of o are called



modifiers, whereas operations that read a value in the decision register d of o and
immediately return f(d) are named observers.

Claim. For every observer op, there exists a unique modifier op0 such that(i) op
observes the decision written by op0, (ii) op0 is either concurrent or prior to op,
and (iii) there is no modifier op00 such that op0 <

h

op00 <
h

op. We shall say in
the following that op0 is the modifier associated to op.

Proof. Consider an operation op that executes on recycle(o, t). If op is an observer,
then according to Construction 2, the decision register d contains a value different
than ?. From Construction 1, we deduce that op reads a value (t0 � t, ) from d.
Since the register d is atomic, a unique operation op0 writes this value to d. This
operation is necessarily concurrent, or prior to op, and moreover there must be
no modifier op00 such that op0 <

h

op00 <
h

op.

Claim. For every modifier op on recycle(o, t) in h, if op0 is a modifier on
recycle(o, t0) and t0 < t holds then op0 precedes op in h.

Proof. We proceed by induction. Consider that the claim holds for all the mod-
ifiers prior to some operation op on recycle(o, t). Then, assume for the sake of
contradiction that an operation concurrent, or following, op writes to the decision
register d of o with a timestamp t0 < t. Name op0 the first such operation. By
P1, there exists an operation op00 on recycle(o, t0) that precedes op0 in h and
that writes to d. From our induction hypothesis and the choice of op0, every
modifier between the response of op00 and the invocation of op0, writes to d with
a timestamp t00 � t0. Hence from the code of Construction 2, op0 observes that o
is decided when it is executed; a contradiction to the fact that this operation is a
modifier.

We detail how to build history lin in Construction 3. Further, we show that
lin is a higher-level view of h. Then, we prove the existence of a decomposition
of lin for which each round is correct for the type T.

(Construction 3) Consider the invocation and response events e that occur in
the history h. In case e = inv

p

(recycle(o, t).op), we add inv
p

(recycle(o).op)
to lin; otherwise e = res

p

(recycle(o, t).op)v for some response value v, and
we add res

p

(recycle(o).op)v to lin. The order in which we add those events
in lin is(i) for modifiers, the order in which they write last to the decision
register d of o, and (ii) for observers, the order in which they read d.

By the fact that registers are atomic, Construction 3 implies that lin is
sequential. Moreover, since every operation reads or writes to d and we order
them according to their accesses to d, the following claim is immediate.

Claim. For any two operations op and op0 in h, if op precedes op0 in h then op
precedes op0 in lin

In what follows, we prove the correctness of lin.



Claim. There exits a decomposition of lin such that in every round r of this
decomposition, r is a correct history for an object of type T.

Proof. For every timestamp t 2 T that appears in h, we define the round r
t

as the
sub-sequence of modifiers in lin that occur on recycle(o, t) in h, together with the
observers (if any) for which one of these operations is a modifier. We order rounds
according to their associated timestamps. Denoting {t1, . . . , tm} the ordered set
of timestamps that appears in h, we prove below that lin = r

t1 . . . . .rtn holds.
Consider an operation op accessing recycle(o, t), and that this operation is

complete in h. According to Construction 3, either op belongs to r
t

, or by Claim B,
there exists a modifier associated to op in some round r

t

0 , and op belongs to that
round. We observe that in both cases, op is complete in the round it belongs to.

Then, let us consider two operations op and op0 that belong to rounds r
t

and
r
t

0
>t

. In each of the three cases that follow, we prove that op and op0 do not
interleave. (Case op and op0 modifiers.) Since t < t0, by Claim B, op precedes op0

in h. By Construction 3, this also holds in lin. (Case op modifier and op0 observer.)
Note op00 the modifier in round r

t

0 associated to op0. This modifier is executed
on recycle(o, t0), whereas op is executed on recycle(o, t < t0). Applying Claim B,
we know that op00 precedes op in h, and thus also in lin. By Construction 3, we
deduce that op <

lin

op00 <
lin

op0 holds. (Case op observer and op0 modifier.)
This case is symmetric to the previous one and thus omitted. (Case op and op0

observers.) Let op1 and op2 be the modifiers respectively associated to op and
op0 in rounds r

t

and r
t

0 . Since t < t0, by Claim B, op1 precedes op2 in h. By
Construction 3, we deduce that op1 <

lin

op <
lin

op2 <
lin

op0 holds.
It remains to show that every round in the above decomposition is a correct

history for an object of type T. To achieve this, let us now consider a round
r
t

and some operation op in r
t

. If op is an observer, then it should return
the decision set by its associated modifier in r

t

, and this modifier precedes op.
Otherwise, by construction all the operations in r

t

are executed on recycle(o, t).
and by definition of lin, all the modifiers preceding the round r

t

were executed
on recycle(o, t0), for some timestamp t0 < t. Thus, from Construction 1, all the
modifiers in r

t

are oblivious of the modifications that occur in previous rounds.
As a consequence, we conclude that r

t

is a correct history for an object of type T.

C Correctness of Algorithm 5

As pointed out in Section 4.3, the correctness of Algorithm 5 relies on Proposi-
tion 1. Below, we state that the recycled consensus objects used in Algorithm 5
satisfy this proposition, then we reduce Algorithm 5 to Algorithm 4.

Proposition 3. During every execution ⇢ of Algorithm 5, for every natural k,
recycle(F (k)) implements a recycled consensus object.

Proof. Choose an execution ⇢ of Algorithm 5 and suppose that P1 holds in ⇢
for all objects recycle(F (k)), up to some operation op on recycle(o, t). The case
t = 0 is obvious, hence from now we assume t > 0. Consider an operation op0 on



recycle(o, t0) such that op0 does not precede op in ⇢ and t0 < t holds. Let p be
the process that executes op in ⇢.

Operation op on recycle(o, t) occurs either at line 13 or at line 21. Since
t > 0, process p executed a call to function enter() at line 32 before, and this call
returned recycle(F (l), t), with o = F (l). From the code at line 15, naturals l and
t are both contained in the decision register of some object recycle( , t� 1). Then
because P1 applies up to op, some process p00 invoked op00 = propose(( , , l, t))

on recycle( , t� 1) previously. At this point, we may consider the two following
cases. (Case t0 = t � 1) The index l computed by p00 is the result of a call to
function free() at line 21. But from the code at lines 25 to 29, at that time L[p00]
equals l. A contradiction. (Case t0 < t� 1) We apply our induction hypothesis to
op00 and op0.

Proposition 4. During every execution ⇢ of Algorithm 5, h|enter() is a correct
history for a racing on consensus objects.

Proof. The domain of enter() consists of all the objects recycle(o, t) with o = F (l)
and t 2 T . For some execution ⇢ of Algorithm 5, we define ⌧

⇢

as the order
induced by < on T , that is recycle(o, t) ⌧

⇢

recycle(o0, t0) holds iff t < t0.
By Proposition 3, recycle(o) is a recycled consensus object. Thus, we may

consider a decomposition of ⇢|recycle(o) in rounds {r1, . . . , rm�1}, where each
round r

i

is a correct history for consensus. Choose some object recycle(o, t).
When some process p executes an operation op on recycle(o, t), we may consider
the round r

i

to which operation op belongs. Because r
i

is a correct history for a
consensus object, this is also the case for the history ⇢|recycle(o, t). This proves
that the domain of enter() is a set of consensus objects.

Then, we observe that when p accesses c
i

= recycle(F (l), t) with some oper-
ation op, p executed a call to enter() previously. From the code at line 15 and
the code of function enter(), the pair (l, t) is the result of a decision stored in
recycle(o0, t� 1). Hence, some process entered recycle(o0, t� 1) previously and
this object is the greatest object smaller than recycle(o, t) for ⌧

⇢

.

We can now state the main result of this section:

Theorem 5. Algorithm 5 implements an obstruction-free linearizable universal
construction.

Proof. From Proposition 4 and the code of Algorithm 5, Algorithm 5 implements
Algorithm 4. Applying Theorem 4, we deduce that Algorithm 5 implements an
obstruction-free linearizable universal construction.


