
Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page i

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Project Number: FP7-ICT-318809

Project Title: LEADS: Large-Scale Elastic Architecture for Data as a Service

Deliverable Number: D3.2

Title of Deliverable: LEADS real-time processing platform

Contractual Date of Delivery: M12 – 2013-09-30

Actual Date of Delivery: 2013-10-2

Abstract

The real-time processing platform is a key component of the LEADS platform, enabling
scalable, distributed, real-time processing of massively distributed data across micro-clouds,
and supporting efficient query execution for arbitrarily complex queries on a combination of
static/historical and streaming data. This deliverable describes the current progress with
respect to the platform (the basic design decisions, as well as the abilities of the existing
implementation), and gives a brief overview of the work to be performed in the next year,
and until the end of the project.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page ii

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

List of Contributors

Name Organization E-mail

Xiao Bai

Matthieu Morel

Ata Turk

BM-Y!

BM-Y!

BM-Y!

xbai@yahoo-inc.com

matthieu@yahoo-inc.com

ata@yahoo-inc.com

Emmanuel Bernard

Jonathan Halliday

Mark Little

Mircea Markus

Manik Surtani

Red Hat

Red Hat

Red Hat

Red Hat

Red Hat

ebernard@redhat.com

jonathan.halliday@redhat.com

mlittle@redhat.com

mmarkus@redhat.com

msurtani@redhat.com

Antonios Deligiannakis

Ioannis Demertzis

Minos Garofalakis

Ekaterini Ioannou

Odysseas Papapetrou

Ioakim Perros

Evagelos Vazeos

TSI

TSI

TSI

TSI

TSI

TSI

TSI

adeli@softnet.tuc.gr

idemertzis@softnet.tuc.gr

minos@softnet.tuc.gr

ioannou@softnet.tuc.gr

papapetrou@softnet.tuc.gr

imperros@softnet.tuc.gr

vagvaz@softnet.tuc.gr

Christof Fetzer

André Martin

Do Le Quoc

Frezewd Lemma Tena

Lenar Yazdanov

TUD

TUD

TUD

TUD

TUD

Christof.Fetzer@tu-dresden.de

Andre.Martin@tu-dresden.de

Do@se.inf.tu-dresden.de

Frezewd_Lemma.Tena@mailbox.tu-dresden.de

Lenar.Yazdanov@tu-dresden.de

Pascal Felber

Marcelo Pasin

Etienne Rivière

Pierre Sutra

UniNE

UniNE

UniNE

UniNE

Pascal.Felber@unine.ch

Marcelo.Pasin@unine.ch

Etienne.Riviere@unine.ch

Pierre.Sutra@unine.ch

mailto:xbai@yahoo-inc.com
mailto:matthieu@yahoo-inc.com
mailto:ebernard@redhat.com
mailto:jonathan.halliday@redhat.com
mailto:mlittle@redhat.com
mailto:mmarkus@redhat.com
mailto:imperros@softnet.tuc.gr
mailto:Christof.Fetzer@tu-dresden.de
mailto:Andre.Martin@tu-dresden.de
mailto:Do@se.inf.tu-dresden.de
mailto:Frezewd_Lemma.Tena@mailbox.tu-dresden.de
mailto:Pascal.Felber@unine.ch
mailto:Marcelo.Pasin@unine.ch
mailto:Etienne.Riviere@unine.ch

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page iii

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Document Approval

 Name Email Date

Approved by WP Leader Minos Garofalakis minos@softnet.tuc.gr 2013-09-30

Approved by GA Member 1 Christof Fetzer Christof.Fetzer@tu-dresden.de 2013-09-25

Approved by GA Member 2 Xiao Bai xbai@yahoo-inc.com 2013-09-21

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page iv

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Contents

LIST OF CONTRIBUTORS .. II

DOCUMENT APPROVAL ... III

CONTENTS .. IV

1. EXECUTIVE SUMMARY ..1

2. INTRODUCTION ..2

3. BRIEF OVERVIEW OF THE WORK-PACKAGE REQUIREMENTS AND ARCHITECTURE2

3.1 MAIN COMPONENTS OF THE REAL-TIME PROCESSING PLATFORM.. 3
3.1.1 The real-time processor .. 3
3.1.2 Listeners attached to the KVS ... 3
3.1.3 The query processor .. 4

4. QUERY PROCESSOR ENGINE ..4

4.1 QUERY DESCRIPTION INTERFACE ... 5
4.2 QUERY PLANNER ... 6
4.3 QUERY DEPLOYER .. 8
4.4 NODE QUERY EXECUTOR ... 8
4.5 FUTURE DIRECTIONS ...11

5. THE MULTIPLE MICRO-CLOUD PAGERANK MAINTENANCE ALGORITHM 11

5.1 PAGERANK .. ERROR! BOOKMARK NOT DEFINED.
5.2 PRELIMINARIES ..12
5.3 HIGH-LEVEL DESCRIPTION OF THE LEADS-ORIENTED APPROACH ..12
5.4 DESIGN DETAILS .. ERROR! BOOKMARK NOT DEFINED.
5.5 PRELIMINARY EXPERIMENTAL RESULTS .. ERROR! BOOKMARK NOT DEFINED.
5.6 ONGOING WORK ... ERROR! BOOKMARK NOT DEFINED.

6. BRIEF PROGRESS REPORT ON OTHER TOPICS OF WP3 .. 13

6.1 PRIVACY-PRESERVING QUERY PROCESSING ...13
6.2 QUERYING TOOLS ...15
6.3 RESULTS AUTHENTICATION ..16

7. PROTOTYPE IMPLEMENTATION .. 18

7.1 RUNNING THE PROTOTYPE ...18
7.2 CONFIGURATION ..20

8. CONCLUSIONS .. 21

9. REFERENCES ... 22

APPENDIX A. PUBLICATIONS FOR LEADS UNTIL MONTH 12 ... 24

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page v

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

GLOSSARY

EU European Union

FP7

KVS

API

REST

Seventh Framework Programme

Key Value Store

Application Programming Interface

Representational State Transfer

URL

SQL

ETL

Uniform Resource Allocator

Structured Query Language

Extract,Transform, Load

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 1

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

1. Executive summary

The real-time processing platform is a key component of the LEADS platform. The core functionality
of the platform is to enable scalable, distributed, real-time processing of massively distributed data
across micro-clouds, and to support efficient query execution for arbitrarily complex queries on a
combination of static/historical and streaming data. This document describes the current progress
with respect to the platform (the basic design decisions, as well as the abilities of the existing
implementation), and gives a brief overview of the work to be performed in the next year, and until
the end of the project.

Clearly, the platform interacts to, and relies on, other LEADS components. First, the platform relies
on the Key Value Store (WP2) to retrieve the collected data (i.e., the crawled webpages or the private
information explicitly pushed by the user), and to enable communication between processes running
across multiple micro-clouds. Second, the platform will interoperate tightly with the Scheduling and
Placement component (WP4) in order to optimize the distributed processing tasks and the query
execution plans, for reducing energy and increasing performance. Finally, the platform will be a key
component for the applications developed for validating LEADS.

The current implementation of the real-time processing platform already supports distributed data
processing tasks, even across multiple micro-clouds, based on the location transparency offered by
the Key Value Store (KVS). These tasks include indexing of the resources in order to enable efficient
answering of user-defined queries (e.g., all webpages containing the term ‘sports’), computing
statistics frequently required for query execution (e.g., PageRank), and other tasks specifically
defined by the user to satisfy special requirements. The implementation is fully integrated with the
up-to-date version of the KVS, for storing the results and for coordinating the data processing tasks
across multiple micro-clouds. Furthermore, the KVS listeners mechanism is already employed to
trigger distributed – near real-time – processing of all webpages. Currently, only some manually
deployed listeners are installed, focusing on answering a set of fairly straightforward pre-defined
user queries (in later implementations, appropriate listeners will be created automatically for most
types of user queries).

The current platform implementation also offers a command-line interface for executing simple SQL
queries (currently, only simple conditional clauses and projections, aggregators, sorting, and equi-
joins on a pre-selected set of indexed attributes are supported). Finally, to satisfy the requirement of
the end-users for an importance score for webpages, the platform includes a novel streaming
PageRank algorithm developed specifically for the LEADS infrastructure, which enables continuous
maintenance of the PageRank scores of all crawled webpages. The algorithm is fully integrated with
the KVS, receiving and processing all crawler updates as a distributed stream.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 2

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Figure 1. The real-time processing platform within LEADS

2. Introduction

The purpose of this document is to summarize the current status of the LEADS real-time processing
platform, explain the main design decisions, and detail on the ongoing and future work. The
document is structured as follows. In the next section we present a brief overview of the real-time
processing platform requirements and architecture. In Section 4, we discuss the query processor
engine, presenting the current status – functionality, algorithms, and implementation details – as
well as future plans. Section 5 describes our progress on cross-cloud real-time processing, and in
particular on streaming PageRank maintenance, presenting a distributed algorithm that is specifically
made for the multi-cloud LEADS architecture. In Section 6 we present a brief overview of other topics
in the context of the real-time processing platform, on which we have some progress, but still do not
have mature results integrated in the project. Section 7 provides instructions on downloading and
running the prototype implementation, and Section 8 concludes the document.

3. Brief overview of the work-package requirements and architecture

The real-time processing platform is a key component of LEADS, responsible for the scalable
processing of a combination of massive historical data and streams. The main novelty of the platform
– and what sets it apart from earlier platforms for distributed stream processing, like StreamMine
and MapReduce Online – is that it will be distributed across multiple micro-clouds, which might even
reside at different distant networks. The user queries will be analyzed, and distributed into the
participating micro-clouds, which will monitor the corresponding web streams, and generate the
query results. The distribution of the queries to the participating clouds, as well as the generation of
the query execution plans, will be taking into account different cost factors, like energy consumption,
required network resources, computational cost, and execution time.

The main functional requirements of the real-time processing platform are as follows:

1. Scalable and real-time processing of massively distributed dynamic data over multiple
heterogeneous micro-clouds;

2. Novel programming models and tools to ease the development of distributed data mining
algorithms, and intuitive querying interfaces to provide basic data analysis and mining
functionalities;

3. Methods to optimize the performance and energy efficiency of distributed data analysis and
mining in LEADS;

4. Privacy-preserving query processing

The platform will be able to offer robustness and fault tolerance for the above functionalities.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 3

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

To perform these functionalities, the platform will rely on components constructed by other LEADS
work-packages. Precisely, it will rely on the consistent distributed data storage component, offered
by WP2, in order to combine processing of stored and streaming data, but also to store the query
results and necessary meta-data. Furthermore, it will employ the scheduling and data placement
functionality of WP4 in order to decide on the optimal query execution plan and distribution of
processing tasks to micro-clouds. Figure 1 summarizes these interactions. The APIs for the two
components of WP2 and WP4 are presented in the corresponding deliverables D 2.2 and D 4.2.

3.1 Main components of the real-time processing platform

Three main components comprise the real-time processing platform: (a) the real-time processor,
described in the next Section, (b) the listeners attached to the KVS, discussed at Section 3.1.2 and (c)
the query processor, presented in Section 3.1.3.

3.1.1 The real-time processor

This component is responsible for the real-time processing of all data accessible by LEADS, i.e., the
crawled webpages, and any data inserted by the user via a push interface. The main architecture of
the component is described in Figure 2. The component will scale across multiple micro-clouds,
achieving load balancing and scalability. An extensible architecture has been chosen to materialize
this functionality, which will enable users to attach ad-hoc components for satisfying particular
requirements. Such components may handle, e.g., text extraction from different document formats,
basic stemming operations, and code for extracting and maintaining different statistics and query-
specific historical data (for example, for maintaining an inverted index). Finally, since PageRank is
currently the main ranking technique for query execution purposes in the Web (clearly, in
combination with query relevance measures), a key functionality of the real-time processor is a
streaming PageRank maintenance for the crawled web-graph. A novel LEADS-based PageRank
algorithm is described in Section 0.

Figure 2. The real-time processor

3.1.2 Listeners attached to the KVS

In order to feed the real-time processor, we will be attaching listeners at the KVS, which monitor all
updates, i.e., all puts. Whenever an update satisfies a listener’s condition (e.g., it inserts a newly-

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 4

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

crawled webpage), it will be forwarded to the appropriate node query executor for further
processing. The listener’s conditions will be determined by the running queries, and installed at the
KVS using a dedicated API. For instance, in order to keep the average sentiment value over all
webpages in the .com domain, a listener will be installed to check the URL of all newly-crawled
webpages, and forward to the appropriate node query executor only the updates belonging to the
domain for further processing. Notice that, to avoid bottleneck and scalability issues at the KVS, only
inexpensive filtering functionality will be pushed to the listeners. The expensive computation, such as
sentiment analysis, will instead be pushed to the query processors, and the real-time processors.

3.1.3 The query processor

The query processor focuses on efficiently executing user queries. The coarse-grained architecture of
the component is presented in Figure 3. The main sub-components are: (a) the query description
interface, which enables users to define their information needs in a flexible and straight-forward
approach, (b) the query planner, which derives efficient query execution plans across multiple micro-
clouds, (c) the deployer, which deploys, coordinates, and monitors the query execution at the micro-
clouds, and, finally, (d) the node query executor, which runs at each node in the network and handles
the actual query execution. In the following section, we will be discussing query processor’s
components in more details.

Figure 3. The query processor

4. Query Processor Engine

In this section we elaborate on the architecture of the query processor, providing a detailed
description of its design and functionality.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 5

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

4.1 Query Description Interface

The Query Description Interface (Figure 5) consists of two modules for describing queries, a graphical
tool and an interface accepting queries described with a declarative language. Precisely, novice users
are supported by a simple and intuitive graphical tool based on mashups. The tool enables
combination of simple widgets (the so called connectors), each one executing a basic functionality,
such as retrieving data from the KVS, filtering data based on a clause, performing a join or deploying
pre-defined MapReduce jobs. Users may combine connectors to form arbitrarily complex
combinations, called query workflows. An example query workflow involving a join over two KVS
filters and sorting of the final results is presented in Figure 4. This graphical tool is based on Apatar1,
an open-source data integration tool, and is described in more detail in Section 0. On the other hand,
expert users rely on a simple interface to express queries in a declarative language. This offers a
higher flexibility to the users for describing their query requirements, possibly even including specific
optimizations.

To decouple the query management from the user interface implementation and to allow an API-
based interaction with the LEADS platform, the Query Description Interface component includes the
User Interface Manager module, which handles the interaction of the user interfaces with the LEADS
platform. The module exposes the following REST API:

a) processQuery(String query): This
function is used for submitting a
query written in the declarative
language.

b) processQueryWorkflow(Workflow

workflow): Used for submitting a
query workflow

c) isCompleted(QueryId Id): Returns
true if the query is completed and
false otherwise

d) fetchResults(QueryId Id): Used for
retrieving the query results from our
system.

1
 http://www.apatar.com

Declarative Language
Interface

Graphical Tool

Interface

User Interface

Manager

processQuery(String query) isCompleted(QueryId id)

Figure 5. Query Description Interface Design

Figure 4. Sample Query Workflow

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 6

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

When User Interface Manager receives a new query, it replies with the new query’s identifier.
Following, it transforms the query into an internal query representation and sends it through a Java
Message Service queue to the Query Planner component.

The current implementation of Query Description Interface has a functional Declarative Language
Interface, which relies on an open-source library (JSQLParser) for parsing simple SQL queries. With
respect to the Graphical Tool Interface, we have already designed LEADS-specific Apatar connectors,
and we are in the progress of developing them and integrating them in the LEADS platform. In the
coming year, we plan to develop a more suitable declarative language interface than SQL, or extend
an existing one, such as the Continuous Query Language or StreamSQL, in order to satisfy LEADS
requirements for combining streaming and static data in the queries.

4.2 Query Planner

The Query Planner is responsible for extracting efficient execution plans for the queries (analogous
to the query planning in relational and distributed databases), which dictate how the actual data
processing will be executed. Briefly, query plans extracted by this component describe the operators
to be executed, and their execution order and dependencies. For example, consider the following
query, expressed in SQL:

SELECT url, body, PageRank FROM WebPages WHERE

body contains “ADIDAS” ORDER BY PageRank LIMIT 100

With this query, the user wants to find the top-100 webpages that contain the term “ADIDAS” and
the result to be sorted by webpages’ PageRank.

Figure 6. A Sample Query Execution Plan

Key space 1 Key space 2

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 7

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

A sample query plan for the aforementioned query (not necessarily optimal) is depicted in Figure 6. A
Sample Query Execution Plan. The plan assumes that there are only two key spaces in the KVS, which
contain the crawled webpages. Thus, Query Planner creates two identical chains, one for each key
space, which filter the webpages that contain term “ADIDAS”. Finally, the sort operator merges and
sorts the result, and the limit operator discards the redundant webpages and keeps only the top-100.

 Figure 7 shows the four modules of the Query Planner component:

a) Query Validator
b) Plan Generator
c) Scheduler Interface
d) Plan Chooser

Query Planner first validates each new query, and breaks it to basic operators, which can be
implemented as MapReduce jobs. These operators are passed to the plan generator, which is
responsible for generating a set of candidate and equivalent query execution plans. For the
generation of efficient plans, the plan generator exploits a set of statistics stored at the KVS, which
can be either offered directly by the KVS (e.g., the total number of keys stored in the KVS), or
generated by deploying dedicated KVS listeners (e.g., the total number of crawled webpages, or the
number of webpages containing a particular keyword). Following, the planner sends these candidate
plans to the scheduler (WP4), in order to estimate the execution cost of each plan. In order to help
the scheduler make this decision, each operator in a plan is annotated with its network and
processing requirements. The resulting query plans, accompanied with their estimated execution
cost are returned back to the plan chooser, where the plan with the minimum estimated cost
(possibly, according to a complex cost aggregate function) is selected, and passed to the Query
Deployer component.

A simplified version of the Query Planner is currently implemented, which generates a single plan,
and supports basic operators such as simple conditional clauses, projections, aggregators, sorting,
and equi-joins on a pre-selected set of indexed attributes without using any advance optimization
techniques for plan generation. Moreover, the scheduler interface is not yet integrated into our
system. During the next year of the project we plan to develop optimization techniques to minimize
the data transfers inside and across micro-clouds, and study the process and problems of combining
streaming and static data over the LEADS infrastructure.

Plan Chooser

Scheduler Interface

Plan Generator

Validator

Figure 7. Internal Representation of Query Planner

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 8

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

4.3 Query Deployer

The Query Deployer is responsible for deploying and monitoring the execution of a query plan, as
well as its recovery in case of either a node or a complete micro-cloud failure. In order to implement
the required functionality, the Query Deployer is split into three modules as shown in Figure 8:

a) The Monitor module, used for monitoring the execution of the current running plans, and
for detecting failures.

b) The Deploy module, responsible for installing the appropriate listeners to the KVS for
continuous queries, and for deploying the plan’s operators to the Query Executor
components running at the nodes.

c) The Recovery module, which is activated when a failure has been detected. The recovery
module attempts to resume the execution of the plan without restarting the whole plan’s
execution.

When the Query Deployer component receives a plan for deployment, the deploy module is notified
to perform the required initialization, i.e., to deploy the listeners to the KVS and the plan operators
to the distributed Node Query Executors. The Monitor module keeps track of the execution progress,
by monitoring the progress of each operator assigned to the Node Query Executors. Upon
completion of any operator, Node Query Executors notify the Monitor, which in turn notifies the
Deploy module to start the next operator in the plan. Furthermore, whenever the Monitor module
detects a failure during the execution of a plan, it notifies the Recovery module, which activates the
recovery procedure for the plan.

In our current implementation, the Query Deployer contains only the Deploy and Monitor module.
The Monitor module can monitor the execution of the plan and detect failures, but no recovery
action is taken yet. Automatic deployment of the listeners is also not yet fully supported; for the
supported queries, all required listeners are manually installed in the KVS. Finally, there is no
integration yet with the elasticity mechanism offered by the interface of WP4 (for starting/stopping
virtual machines).

 Figure 8. The Query Deployer

4.4 Node Query Executor

The Node Query Executor is the core processing unit of the platform, handling all requests for
executing operators. These operators can be classified into two types:

a) Traditional operators, such as SELECT, PROJECT, and GROUP BY.
b) Continuous/streaming operators, which are used to materialize stream algorithms,

The streaming operators are focused on event stream processing. The most frequent source of event
streams is by the KVS listeners. In particular, listeners are triggered by updates in the KVS. Whenever
a listener’s condition is satisfied, then the listener generates an event, which is delegated to the
appropriate streaming operators. The listener’s conditions are determined by the running queries,
and installed at the KVS using the dedicated API.

Query Deployer
Monitor Module Deploy Module Recovery Module

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 9

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Each Node Query Executor has a module responsible for maintaining and updating the statistics
written in the KVS and used by Query Planner’s generator, e.g., the selectivity of a join, or the
number of URLs. After the completion of an operator, the Query Executor component reports the
completion to the Monitor module of the Query Deployer, and saves the results of the operator in
the KVS.

The current implementation of the Node Query Executor can handle a partial set of operators, i.e.,
simple conditional clauses and projections, aggregators, sorting, and equi-joins on a pre-selected set
of indexed attributes. The implementation is based on the MapReduce capabilities provided by
Infinispan. In the following year, the implementation will be extended to handle a full set of SQL
operators. Furthermore, we will investigate the problem of fault-tolerance for the node query
executor: currently, a failure at a node running the query executor may lead to failure on executing
the query, or to incomplete answers, depending on the operator assigned at the node and the type
of failure. Moreover, we will develop a toolbox offering generic data mining tasks, e.g., finding all
stream items that satisfy a pattern chosen by the user or finding the top-k frequent keys observed in
a stream. Finally, we will work towards enabling users to use a combination of streaming and
traditional operators in their queries.

Figure 9 summarizes the steps necessary for processing a query. With green we have marked the
components and steps that are currently integrated in the platform (yet mostly in preliminary
versions, without any optimization) and with grey we marked the components that are still being
implemented.

Query Processing Steps:

1. Design query with the available user interfaces
2. Use the User Interface Manager to submit query to our system
3. The User Interface Manager responds with the query identifier for that query
4. The User Interface Manager transforms the query to internal representation and sends it to

Query Planer
5. Query Planner’s validator validates the query and breaks it to basic operators
6. Using the statistics in the KVS, the Plan Generator creates a set of candidate plans
7. Using Scheduler’s API each query plan is evaluated, to estimate the execution cost
8. One plan from the set is chosen
9. Send the chosen plan to the Query Deployer
10. The Deploy module starts and installs all the necessary listeners for the query
11. The Monitor module is informed from the Deploy module for the deployment of operators
12. Operators are deployed to the Node Query Executor components
13. The static operators implemented in the Node Query Executor read data from the KVS
14. Query Executor reports the completion to the Monitor module in order to continue the

execution of the plan
15. The streaming operators handle the stream of events generated by the listeners on KVS
16. After finishing the execution of the whole plan, the Query Deployer changes the status of the

query to completed status, so user interfaces can fetch the results using the User Interface
Manager API

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 10

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Figure 9. Detailed diagram of the query processing flow in our system

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 11

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

4.5 Future directions

A functional version of the query processor engine is provided with this prototype. The engine
directly inherits the scalability properties of the KVS and Infinispan’s MapReduce, i.e., it can scale by
just adding more nodes in the network, in terms of both computational capacity and storage
capacity/memory.

However, as already anticipated for the first prototype in the DoW, the M12 prototype is subject to a
number of limitations. The three main limitations, which we will be considering in the following year,
are the following. First, the prototype is not yet robust to network and hardware failures. In fact, an
unexpected termination at a node may lead to information loss, since the KVS segment running on
the machine will not be given the chance to terminate gracefully, e.g., move the data to another
node. A hardware or network failure will also affect any listener running on the node, thereby
causing loss of information. Clearly, these problems are common to all large-scale data-intensive
systems, where network and hardware failures are frequent, and there exist substantial research
results in the literature (see, e.g., Storm [Sto13], S4 [NRN+10], and StreamMine [Fet10]), which we
will be considering in the next year in collaboration with WP2 and WP4.

Second, the prototype does not yet include all envisioned optimizations. Clearly, integrating the WP3
query engine with the scheduler (WP4) will enable the extraction and materialization of more
efficient query execution plans, which take into account the hardware resources and the cost factors
of the participating clouds. Furthermore, network resources can be substantially reduced by
incorporating synopses/sketches [BB70, CM04, PGD12] and efficient distributed monitoring
algorithms, e.g., the geometric method [SSK06]. Finally, a statistical solution for automatically
extracting a set of listeners that will reduce the computational cost will be considered (e.g., for
maintaining secondary indexes over the KVS).

Finally, the query processor engine functionality will be enriched in the following year in order to
efficiently support a more advanced SQL syntax, as well as continuous queries. This will involve
investigation on alternative query description languages (such as extensions of CQL [ABW06], or
mashup-based user interfaces [Apa13]), as well as research on distributed query monitoring.

Notice that all described limitations are non-trivial, stem from open research challenges, and are
commonly found in most distributed data-intensive systems. Therefore, we anticipate that
substantial research resources will be invested on investigating and addressing these limitations, and
on integrating the results in the LEADS platform.

5. The multiple micro-cloud PageRank maintenance algorithm

To adapt to the requirements of Web users, our framework should have the ability to rank
webpages, not only based on the relevance score with a query, but also based on the ‘importance’ of
each webpage. In fact, due to the explosion of the size of the web in the last decade, ranking
algorithms have become one of the most important components of modern search engines, such
that users can quickly focus on the most important relevant results for their query out of the,
possibly thousand, relevant web-pages. PageRank is one of the key algorithms for performing this
ranking, empowering Google web search engine.

Similar ranking functionality is also required at the LEADS project, as evident by discussion with the
end-user, during the validation scenario development. Our solution is custom-designed for LEADS, as
it inherently considers: (a) the distribution of the processing units to (possibly distant) micro-clouds,

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 12

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

and, (b) the continuous maintenance of the webpages scores according to the streaming/continuous
updates. No existing PageRank computation algorithm satisfies both of the above requirements.

5.1 Preliminaries – Related Work

Page et al. [PLB+99] remarked that the importance ranking of a URL is essentially the determination
of the limiting distribution of a random walk on the web graph. This coupling of the theory of random
walks with the PageRank computation, gave rise to a family of Monte Carlo algorithms for PageRank
computation. The core concept behind all these algorithms is to execute random walks on the
available web-graph, counting the visit counts at each webpage. The final number of visit counts per
webpage is in fact proportional to the PageRank of the page. Notice that these methods can be
distributed by nature (yet under the shared memory model) and can be very efficient in dealing with
our streaming query needs, as they find suitable application to settings where fast and approximate
answers are preferable than slower and exact ones. Fundamental work based on this family of
methods for static web graphs is provided by Avrachenkov et al. [ALN+07].

To enable continuous maintenance of the PageRank vector, Bahmani et al. [BCG10] recently
proposed the state of the art PageRank computation algorithm for streaming graphs. They consider a
distributed shared memory cluster as the storage medium. Intuitively, this method emulates the
standard Reservoir Sampling technique ([V85]), a randomized algorithm for choosing samples from
a list containing items, where is either a very large or an unknown number. In essence, the
algorithm in [BCG10] attempts to maintain the same visit counts across webpages that would have
been the result of the algorithm in [ALN+07], if the whole network was available beforehand, in a
static manner. In this way, the PageRank values of all pages can be progressively maintained.

5.2 High-level description of the LEADS-oriented approach

Focusing on networks of remote micro-clouds, such as the ones enabled by LEADS, we have
developed a novel PageRank algorithm that enables both distributed PageRank computation, as well
as incremental maintenance, i.e., maintaining PageRank with updates on the web-graph. Our
algorithm belongs to the Monte Carlo family, constructing random walks and relying on the visit
counts at each webpage to estimate its PageRank score. However, unlike the algorithm of Bahmani
et al. [BCG10] that enables updates, our approach does not require an explicit maintenance of the
full random walk segments. This property enables the participating nodes to exchange only
aggregate information whilst creating the random walks, drastically cutting down the network
requirements. The algorithm makes no assumption about the assignment of pages to micro-clouds or
nodes, e.g., hash partitioning or any other partitioning determined by the crawling policy can be
used.

During the initialization, R random walks are constructed from each node, each of which terminates
at each step with a predefined stopping probability. Since the exact random walks need not be
maintained (only the visit counts are important for the algorithm), nodes exchange only aggregate
information for constructing the random walks. For example, consider pages A and B, with A linking
to B. Whenever the node holding page A discovers random walks that need to proceed from A
to B, it only needs to send a single message , to the node holding B. Compared to the
algorithm in [BCG10], which sends different messages along with the different random walk ids and
positions at these random walk segments, this aggregation enables substantial network savings. To
emulate the deletion process of random walks in the absence of the already constructed segments,
we introduce the notion of negative random walks. Negative random walks are constructed
identically to standard random walks, but decrease the visit count of the pages passing through,

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 13

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

instead of increasing it. Clearly, the challenge is to show that the distribution of visit counts produced
by this method is also proportional to the PageRank vector, as in the case of [BCG10].

A working prototype of the above high-level description is already integrated in the LEADS platform;
we are still designing and implementing many algorithmic optimizations that have the potential to
substantially improve the performance of the algorithm. Further details are omitted due to the
unpublished status of this work.

6. Brief progress report on other topics of WP3

In this section we briefly comment on functionality of the real-time processing platform, for which
the work-package partners already started working on, but still do not have solid results integrated in
LEADS. These are: (a) privacy-preserving query processing for range and point queries, (b) querying
tools, and, (c) results authentication.

6.1 Privacy-preserving query processing

To enable LEADS users to securely use the platform for processing and storing also their own
sensitive data, WP3 partners already started looking into privacy-preserving query processing
(officially starting at month 12). Our research currently focuses on addressing range queries on
encrypted fields, i.e., queries with range conditions. To illustrate the problem, consider the simple
data presented in Error! Reference source not found., which could be an excerpt of a national tax
registry database. Assume that the salary of each citizen constitutes strictly sensitive information,
which should never be made available to unauthorized third-parties. However, due to the magnitude
of the dataset, and to enable truly-distributed and scalable query execution, both these fields also
needed to be stored in the platform, which may incorporate third-party (untrusted) micro-clouds.

Even though there exist many different encryption techniques, which allow safely storing sensitive
data in the cloud, these techniques naturally impose some functionality constraints. Currently, we
are looking into the problem of executing range queries on these encrypted data. Two such queries
may be (expressed in SQL):

Q1: SELECT * FROM citizens WHERE salary≥1K AND salary≤2K

and
Q2: SELECT COUNT(*) FROM citizens WHERE salary≥1K AND salary≤2K

Both queries need to perform a selection on an encrypted field (salary). Clearly, the user does not
want to release the decryption method (e.g., a secret key) to the whole platform, since the platform
may include compromised computers. The trivial solution of retrieving all records at a trusted
computer and decrypting them is also problematic, since it does not scale. Therefore, we need a
method that enables distant micro-clouds that hold the information to decide whether the salary is
within the query range, without actually decrypting it, and without revealing any information.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 14

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Figure 10. An excerpt of a national tax registry database (id,salary)

Related work comes from two distinct areas: (a) data confidentiality, and (b) access privacy. In the
following we describe the key representatives from these areas.

Data confidentiality

Order Preserving Encryption

In the recent years significant research is conducted around the subject of Order Preserving
Encryption Schemes (OPE) [BCY09] [XYH12] [YKK12] [LW12] [PLZ13]. OPE schemes are deterministic
encryption schemes that preserve the order of the plaintext, allowing the execution of efficient range
queries directly on encrypted data on the cloud. An ideal security guarantee for OPE schemes has to
ensure that no other information is revealed besides the order of the plaintext values; Among the
family of OPE schemes, only the recent work of Popa et al. in [PLZ13] achieves the ideal OPE security
guarantee. However, all OPE schemes including [PLZ13], have two major drawbacks which are the
order revealing and the distribution leakage of repeated ciphertexts due to determinism. Hence, an
adversary who is either aware of the domain of the encrypted values or gathers statistical data, is
capable of building a mapping between the actual and the encrypted values.

Bucketization Approaches

Hacigumus et al [HILM02], proposed a bucketization based approach that Hore et al. [HMT04] further
extended and improved. The bucketization technique presupposes data partitioning into buckets
that are eventually stored in the cloud. The client side retains the respective indices whose number
increases linearly with the number of buckets, also affecting the index search process in the same
manner. Whenever a range query is to be executed, all buckets containing query results are
retrieved from the server. However, false positive values are also included in the retrieved buckets
and need to be filtered out from the final answer. This process is carried out on the client side and
requires the decryption of all tuples contained in the buckets leading to an often prohibitive cost.
Furthermore, updating data is expensive since it requires re-distribution of the tuples. In terms of
security this approach is less threatening to the Access Privacy Problem due to false positives, but
does not provide any proofs. More specifically it tunes security to the desired level with the cost of
degrading efficiency respectively (uses the trade-off between efficiency and privacy).

Predicate Encryption

Predicate encryption query schemes guarantee strong security definitions, while causing at the same
time high computational overhead since they attempt to allow privacy preserving querying by
multiple authorized users. In predicate encryption schemes a ciphertext is associated with a set of
hidden attributes S. We define a predicate function f() and a token created by the master secret key.
Using this token in function f() the client can check whether this secret set for a ciphertext is satisfied

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 15

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

(f(s)=1) without decrypting the data. Boneh and Water support range queries in [BW07], since they
achieve strong security guarantees. However, their approach suffers from big ciphertext size. Shi et
al. in [SBC07] and Lu in [Lu12], attempt a relaxation on Boneh's encryption scheme on the security
guarantees in order to improve the efficiency. The aforementioned approaches guarantee Data
Confidentiality, but they do not provide any Access Privacy guarantees.

FHE - HE

Homomorphic cryptosystems(HE) cannot support privacy preserving range queries, since an
appropriate range query homomorphic cryptosystem does not exist. A fully homomorphic encryption
(FHE) scheme, proposed by Gentry in [Ge09] and in [Ge11], is a generalization of homomorphic
encryptions that allows the execution of any arbitrary function, including range queries on encrypted
ciphertexts, without requiring any decryption. Yet, it appears to be totally impractical due to the
required ciphertext size and the computational time that sharply increases as we increase the
security level.

Access Privacy

Querying on data may lead to the reveal of sensitive information about the data and in such cases
access privacy is essential. Among the proposed protocols guaranteeing Access Privacy, the most
prominent ones are Private Information Retrieval [CKG98] [SiC07] [OG12] and Oblivious RAM
[Ostr90] [WS08] from the Crypto community. It is worth noticing that these approaches are potential
solutions to the aforementioned problem, but they introduce an additional computational overhead
which in practice is prohibitive.

Our direction for solving this problem utilizes techniques from the Database community. Our aim is
to simultaneously preserve Access Privacy and Data confidentiality, in an efficient manner. To the
best of our knowledge none of the prior works has achieved the aforementioned integration. We
refrain from including the details of the approach in this document, since the work is still
unpublished. For further details, please contact us.

6.2 Querying tools

The current implementation supports only SQL queries via a command-line terminal. However, this
will not be a constraint of the final LEADS platform. The WP3 members have started extending
Apatar such that it can be used as a querying interface over LEADS for inexperienced users. Apatar is
an open source data integration and ETL tool, and relies on connectors to perform data loading,
integrations and transformations (e.g., to retrieve data from a database, or to perform basic text
processing and transformation). Constructing an ETL process is as simple as selecting the proper
connectors from a prepared library, parameterizing them, and linking them to a mashup.

The existing connectors library of Apatar does not completely cover the LEADS requirements. In
particular, up to now we have identified and started constructing the following connectors:

a) A connector to enable exchanging data with the KVS
b) A connector to enable deploying and monitoring map-reduce jobs
c) Connectors to support frequent processing on streams, as well as arbitrary stream

processing tasks
d) A set of connectors for constructing basic SQL queries (equi-joins, group by and order by

clauses), on both streaming and static data.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 16

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

In the course of the project, we plan to fully implement these connectors, connect them with the
platform, and possibly identify additional connectors that implement frequent end-user
requirements.

During the second year of the project, we will also focus on developing/extending a declarative
language that will enable expert users to perform complex queries. Declarative programming,
compared the imperative paradigm (e.g., MapReduce, or standard programming languages),
provides better flexibility for optimizations in distributed settings (see, e.g., Bloom [ACC+10,
ACH+11], or OverLog [LCM+06]).

6.3 Results authentication

Our previous discussion was based on an inherent assumption that the servers are curious to
learn/decrypt sensitive data, but not malicious. However, outsourcing naturally raises the issue of
trust. Specifically, the third party may act maliciously to increase profit, e.g., it may collude with rival
companies and present fraudulent results to bias the competition; or it may shed some of the
workload and only compute on a sample of the input to save effort. Even when the server is honest,
problems can arise, as it may run buggy software, or (given the scale of the problems considered)
suffer from equipment failure or read/write errors.

It is therefore particularly important to adopt methods for result authentication. In a recent work
[PCDG13], we have proposed such methods with a particular focus on continuous queries. These
methods enable the clients to verify the correctness of the streaming results they receive from the
server, i.e., that they have not been tampered (integrity) and up-to-date (freshness). The goal of the
work is to make stream authentication a very lightweight operation for all parties involved, and
establish it as a standard tool for error-checking, in a similar way to the ubiquitous use of checksums
for reliable file transfer. Briefly, the main contributions of the work are:

 We introduce constructions for authenticating: (i) sums of dynamic vectors produced by one or
multiple streams, (ii) dot products of dynamic vectors produced by different streams, and (iii)
products between dynamic matrices generated by different streams. Our schemes are extremely
lightweight for the owner, as they mainly involve inexpensive hash operations and modular
additions or multiplications in a very small finite field. They are also cheap for the client, who
verifies the result without adding substantially to the cost of reading the output. Moreover, they
impose only a small extra overhead to the computation cost of the server.

 We provide strong cryptographic guarantees for all our constructions, derived from formal
definitions and proofs.

 We show how to adapt the basic schemes in order to solve a range of database queries in stream
authentication, including group by queries, joins, in-network aggregation, similarity matching,
and event processing. To our knowledge, we are the first to address result authentication for
such a large range of complex queries.

The generic idea is to design proper summaries, which are different for each class of queries that the
owner(s) of data can efficiently maintain upon the arrival of new data. At each time period, the
owner forwards to the server not only the newly arrived data, but also a compact signature, which is
generated by the owner’s maintained summaries. The server is also provided with a way to combine
these signatures, in order to provide a proper proof to the client(s) that its reported results are
current and have not been tampered. The client can then easily verify the integrity and freshness of
the provided results. More details for the work can be found in [PCDG13] (available in the appendix).

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 17

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Our current focus is on combining the proposed methods with encryption, to be able to support
result verification also on encrypted data. Furthermore, we will explore different query types, such as
arbitrary sliding window queries and optimizations involving cases of large numbers of clients.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 18

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

7. Prototype implementation

The source code can be found online at
https://github.com/vagvaz/Leads-QueryProcessor.git

Furthermore, the prototype implementation is deployed at
https://dashboard-

dresden4.aocloud.eu/project/images_and_snapshots/

as a snapshot of a virtual machine with name
Leads-QueryProcessor Demo

 The virtual machine image includes the following software:

 An open-source operating system (Ubuntu linux), including the Java Virtual Machine
(OpenJDK 1.7.0).

 The Query Processor Engine of WP3

 The distributed PageRank algorithm of WP3

 The terminal-based user interface for executing SQL queries of WP3

 A deployment of the Key-Value Store of WP2

 The distributed web crawler of WP1

The snapshot runs at IP address 80.156.223.205.

Notice that additional snapshots can be started in order to increase scalability (no configuration is
required, as long as the virtual machines run in the same subnet).

7.1 Running the prototype

To run the prototype, first create a file containing the private key provided for the demo. Then, in
order to connect to the already-running virtual machine, use the following command:

ssh –i path_to_file ubuntu@80.156.223.205

After successful connection to the virtual machine, the LEADS query processor and user interface can
be started using one of the following scripts:

processor-with-crawler.sh: This is a stand-alone script, which starts an instance of a web
crawler together with the query processor. This script is provided only for demonstration
purposes and will not be useful in the final installation, since the crawlers and the query
processors will be running independently, possibly also in different micro-clouds.

processor.sh: This script starts an instance of the query processor. Use this script if there
already exists a running instance of the web crawler in the same subnet (see D1.2 for more
details on the web crawler).

Any of the two scripts will start a terminal-based user interface for executing SQL queries.

In order to quit the user interface, use the command ‘quit;’ (note that terminating with Ctrl-C
may lead to information loss, due to abnormal termination of the KVS store) .

https://github.com/vagvaz/Leads-QueryProcessor.git
https://dashboard-dresden4.aocloud.eu/project/images_and_snapshots/
https://dashboard-dresden4.aocloud.eu/project/images_and_snapshots/

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 19

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

The query processor implementation currently supports the following SQL syntax:
SELECT

 select_expr [, select_expr ...]

 [FROM table_reference

 [JOIN table_reference ON col_name = col_name]

 [WHERE where_condition]

 [GROUP BY {col_name}]

 [HAVING where_condition]

 [ORDER BY {col_name}

 [ASC | DESC]]

 [LIMIT { row_count }]

The select expression can be a column name, or one of the following functions: count, avg,
sum.

The following two tables are created and maintained automatically, and can be used for writing SQL
queries:

Table webpages: This table contains all crawled web pages, and has the following structure:

{

string url: the url of the webpage as a string,
string domainName: the domainName for the webpage as a string,
double pagerank: the pagerank computed by WP3 pagerank algorithm as double,
string body: the content of the webpage as a string and
double sentiment: an overall estimation of the sentiment of webpage’s content.

}

Table entities: This table contains information for entities that are extracted from the webpages
(e.g., adidas) and has the following structure:

{
string webpageURL: the url of the webpage that contains the entity,
string name: the name of the entity and
double sentimentScore: The sentiment for the entity in the webpage

}

The following sample queries can be used to demonstrate the capabilities of the prototype query
processor:

 SELECT domainName, avg(pagerank) FROM webpages GROUP BY

domainName ORDER BY avg(pagerank) DESC LIMIT 10;

 SELECT domainName, avg(pagerank), avg(sentimentScore) FROM

webpages JOIN entities on url=webpageURL WHERE entities.name

like 'adidas' GROUP BY domainName HAVING avg(sentimentScore) >

0.5 ORDER BY avg(pagerank) DESC;

 SELECT count(*) from webpages;

 SELECT url,sentiment FROM entities WHERE sentiment>0.4 LIMIT 5;

 SELECT domainName, sum(pagerank) FROM webpages group by

domainName ORDER BY sum(pagerank) DESC LIMIT 10;

The prototype implementation has the following limitations:

1. The query processor does not support aliases.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 20

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

2. In queries with a join, the column of the table found in the FROM clause must be the left
operand in the equality relation. In the following example, the URL column of the webpages
table is the left operand in the relation of the join :
SELECT domainName,name FROM webpages JOIN entities on

url=webpageURL;

3. The * wildcard can be used only inside a function. For example, the following query is
supported
SELECT count(*) from webpages;

whereas the following query is not supported
SELECT * FROM webpages;

As a workaround, user must set the column names explicitly.
4. The free version of the third-party, web-service AlchemyAPI used for extracting the entities

and sentiment scores imposes a quota on the number of requests per day and user.
Furthermore, the service offers no up-time guarantees. If the quota is surpassed or if the
service is down, some sentiments may be set to -2.

5. Robustness: If the query processor terminates unexpectedly (e.g., through a Control-C signal,
or due to a network or hardware fault) the hosted segment from the KVS may be lost.
Clearly, this can lead to information loss. This limitation will be addressed by replication at
the KVS level.

7.2 Configuration

The configuration for the query processor is read by the file processor.properties, which is saved at
the root directory. The file includes three parameters:

1. processorInfinispanConfigFile: This parameter defines the file used to
configure the KVS instance that will be started by the query processor.
processorSentimentAnalysisKeyFile: This parameter is used to specify the file
containing the AlchemyAPI key to use.

2. verbose: This parameter configures the verbosity of the logging information presented

in the querying terminal. verbose can be set to true or false.

A sample configuration file follows:
processorInfinispanConfigFile=infinispan-clustered-tcp-processor.xml

processorSentimentAnalysisKeyFile=key-processor.txt

verbose=true;

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 21

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

8. Conclusions

This deliverable summarizes the progress of WP3 at M12 with respect to the real-time processing
platform. A special emphasis is given on the query execution engine, which is the core component of
the real-time processing platform, necessary for efficient data retrieval. The deliverable also
elaborates on the streaming multiple micro-cloud PageRank algorithm developed in the context of
LEADS, since PageRank scores are required by most available ranking functions.

Our effort in the second year of the project will be concentrated on optimizations on the query
execution engine specifically focused on the multiple micro-cloud infrastructure of LEADS, as well as
on adding fault-tolerance to the engine. The engine will be integrated with the query scheduler for
supporting the optimizations, but also with the querying interface of Apatar for enabling a graphical
user interface for the inexperienced users. For the experienced users, we will work towards
developing or extending a declarative query language that enables a family of more aggressive
optimizations. Finally, our work on privacy-preserving query processing for point and range queries
will be completed and integrated in the system, enabling LEADS users to efficiently store and retrieve
private/sensitive information.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 22

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

9. References

[PCDG13] S. Papadopoulos, G. Cormode, A. Deligiannakis, M. Garofalakis: Lightweight
authentication of linear algebraic queries on data streams. SIGMOD Conference 2013:
881-892.

[ACC+10] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears, Boom
analytics: exploring data-centric, declarative programming for the cloud, in Proceedings
of the 5th European conference on Computer systems, 2010, pp. 223–236.

[ACH+11] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak, Consistency Analysis in
Bloom : a CALM and Collected Approach, Systems Research, pp. 249-260, 2011.

[LCM+06] B.T. Loo, T. Condie, M. Garofalakis, D.A. Gay, J.M. Hellerstein, P. Maniatis, R.
Ramakrishnan, T. Roscoe and I. Stoica. Declarative Networking: Language, Execution and
Optimization. ACM-SIGMOD International Conference on Management of Data,
Chicago, 2006

[BCY09] A. Boldyreva, N. Chenette, Y. Lee, and A. O Neill. Order-preserving symmetric
encryption. In Advances in Cryptology-EUROCRYPT 2009, pages 224-241. Springer, 2009.

[XYH12] L. Xiao, I.-L. Yen, and D. Huynh. A note for the ideal order-preserving encryption object
and generalized order-preserving encryption. 2012.

[YKK12] D. H. Yum, D. S. Kim, J. S. Kim, P. J. Lee, and S. J. Hong. Order-preserving encryption for
non-uniformly distributed plaintexts. In Information Security Applications, pages 84-97.
Springer, 2012.

[LW12] D. Liu and S. Wang. Programmable order-preserving secure index for encrypted
database query. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference
on, pages 502-509. IEEE, 2012.

[PLZ13] Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding.

[HILM02] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the
database-service-provider model. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 216-227. ACM, 2002.

[HMT04] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In
Proceedings of the Thirtieth international conference on Very large data bases-Volume
30, pages 720-731.VLDB Endowment, 2004.

[BW07] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In
Theory of cryptography, pages 535-554. Springer, 2007.

[SBC07] E. Shi, J. Bethencourt, T.-H. Chan, D. Song, and A. Perrig. Multi-dimensional range query
over encrypted data. In Security and Privacy, 2007. SP'07. IEEE Symposium on, pages
350-364. IEEE, 2007.

[Lu12] Y. Lu. Privacy-preserving logarithmic-time search on encrypted data in cloud. In Proc. of
NDSS, 2012.

[Ge09] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[Ge10] C. Gentry. Computing arbitrary functions of encrypted data. Communications of the
ACM, 53(3):97-105, 2010.

[CKG98] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. Journal
of the ACM (JACM), 45(6):965-981, 1998.

[SiC07] R. Sion and B. Carbunar. On the computational practicality of private information
retrieval. In Proceedings of the Network and Distributed Systems Security Symposium,
pages 2006-06, 2007.

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 23

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

[OG12] F. Olumofin and I. Goldberg. Revisiting the computational practicality of private
information retrieval. In Financial Cryptography and Data Security, pages 158{172.
Springer, 2012.

[Ostr90] R. Ostrovsky. Efficient computation on oblivious rams. In Proceedings of the twenty-
second annual ACM symposium on Theory of computing, pages 514-523. ACM, 1990.

[WS08] P. Williams and R. Sion. Usable private information retrieval. In Network and Distributed
System Security Symposium, 2008.

 [BCG10] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast incremental and
personalized PageRank. Proc. VLDB Endow. 4, 3 (December 2010), 173-184.

[PLB+99] Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd. "The PageRank
citation ranking: bringing order to the web." (1999).

[ALN+07] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, Natalia Osipova. “Monte Carlo
methods in PageRank computation: When one iteration is sufficient”, SIAM Journal on
Numerical Analysis, 2007

 [LM04] A. N. Langville and C. D. Meyer. Updating PageRank with iterative aggregation. In WWW
Alt. ’04: Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, pages 392–393, New York, NY, USA, 2004. ACM.

[V85] Jeffrey S. Vitter. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 1
(March 1985), 37-57. DOI=10.1145/3147.3165 http://doi.acm.org/10.1145/3147.3165

[NRN+10] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, S4: Distributed Stream Computing
Platform, in 2010 IEEE International Conference on Data Mining Workshops (ICDMW),
2010, pp. 170-177.

[Sto13] Storm: Available online at https://github.com/nathanmarz/storm/wiki.
[Fet10] Christof Fetzer. StreamMine: a scalable and dependable event processing platform. In

Proceedings of the Fourth ACM International Conference on Distributed Event-Based
Systems (DEBS '10). ACM, New York, USA, 222-222.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous query
language: semantic foundations and query execution. The VLDB Journal 15, 2 (2006),
121-142.

[Apa13] Apatar web site: Available online at http://www.apatar.com/
[BB70] Bloom, Burton H. Space/Time Trade-offs in Hash Coding with Allowable Errors,

Communications of the ACM 13 (7): 422–426.
[CM04] Cormode, Graham, S. Muthukrishnan. An Improved Data Stream Summary: The Count-

Min Sketch and its Applications. J. Algorithms 55: 29–38.
[PGD12] Odysseas Papapetrou, Minos N. Garofalakis, Antonios Deligiannakis: Sketch-based

Querying of Distributed Sliding-Window Data Streams. PVLDB 5(10): 992-1003 (2012)
[SSK06] I. Sharfman, A. Schuster, and D. Keren, A geometric approach to monitoring threshold

functions over distributed data streams. Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, New York, NY, USA, 2006, pp. 301–
312.

https://github.com/nathanmarz/storm/wiki

Deliverable D3.2

Initial prototype of the LEADS real-time processing platform

INFSO-ICT-318809 Page 24

LEADS: Large-Scale Elastic Architecture for Data-as-a-Service

Appendix A. Publications for LEADS until Month 12

S. Papadopoulos, G. Cormode, A. Deligiannakis, M. Garofalakis: Lightweight authentication of linear
algebraic queries on data streams. SIGMOD Conference 2013: 881-892.

