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Abstract	
D3.4	is	the	final	deliverable	of	WP3.	Its	purpose	is	to	describe	the	processing	platform	and	

tools	 delivered,	 focusing	 on	 the	 changes	 and	 enhancements	 that	 occurred	within	 the	 last	

year	 of	 the	 project.	 The	 deliverable	 includes	 a	 brief	 overview	 of	 the	 query	 engine	 and	

processing	platform,	and	a	detailed	discussion	on	the	following	key	aspects:	(a)	the	updated	

multi-cloud	MapReduce	model	and	implementation,	(b)	the	changes	in	the	query	processing	

engine,	and	(c)	research	results	on	the	topic	of	algorithms	for	distributed	stream	processing.	
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Executive	summary	
D3.4	is	the	final	deliverable	of	WP3.	It	describes	the	delivered	processing	platform	and	tools,	focusing	

on	the	changes	and	enhancements	that	occurred	within	the	last	year	of	the	project.	The	deliverable	

includes	a	brief	overview	of	the	query	engine	and	processing	platform,	and	a	detailed	discussion	on	

the	 following	key	aspects:	 (a)	 the	updated	multi-cloud	MapReduce	model	and	 implementation,	 (b)	

the	 changes	 in	 the	 query	 processing	 engine,	 and	 (c)	 research	 results	 on	 the	 topic	 of	 distributed	

algorithms.	Appendix	A	 includes	results	of	the	research	effort	 in	the	context	of	WP3	(accepted	and	

submitted	papers,	work	in	preparation),	and	Appendix	B	includes	instructions	for	deploying	and	using	

the	platform.	

	

Query	processing	engine.	Section	3	presents	the	updated	query	processing	engine,	which	introduces	
new	 features	 and	 substantial	 performance	 improvements	 compared	 to	 the	one	 delivered	 at	M24.	

The	 major	 changes	 include:	 (a)	 the	 support	 for	 indexes	 that	 enable	 faster	 query	 execution	 for	

selective	queries,	(b)	an	updated	cost-based	query	planner,		(c)	handling	of	intermediary	data	in	local	

auxiliary	storage,	(d)	batch	messaging	and	(e)	more	efficient	implementations	of	the	operators.	

	

Multi-cloud	MapReduce.	Section	4	includes	a	discussion	on	the	multi-cloud	MapReduce	engine	and	

its	improvement	compared	to	the	M24	engine.	

	

Research	 results	 on	 distributed	 algorithms.	 In	 the	 last	 year,	 WP3	 participants	 had	 several	

publications	submitted	and	accepted	in	international	conferences.	In	Section	5	we	briefly	summarize	

our	 research	 results	 from	 the	 last	 year	 (accepted	 papers,	 work	 in	 preparation	 and	 papers	 under	

submission).	We	also	describe	 in	more	detail	 two	recently	accepted	publications,	and	present	their	

relation	 to	 LEADS.	 The	 first	 publication	 proposes	 a	 sketching	 technique,	 called	 ECM-sketch,	 and	

shows	 how	 it	 can	 be	 used	 in	 large-scale	 distributed	 systems,	 like	 LEADS,	 for	 maintaining	 sliding	

window	 summaries	 of	 distributed	 streams.	 The	 second	 proposes	 TOPiCo,	 an	 algorithm	 for	

maintaining	top-k	lists	over	distributed	networks.	The	full	papers	are	included	in	Appendix	A.		

	

Appendix.	 Appendix	 A	 includes	 copies	 of	 the	 papers	 discussed	 in	 Section	 5.	 Appendix	 B	 includes	
detailed	instructions	on	deploying	and	using	the	processing	platform	and	query	engine	in	new	virtual	

machines.	
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1. Introduction	
WP3	is	responsible	for	offering	the	distributed	data	processing	and	querying	capabilities	of	the	LEADS	

platform.	The	foundations	of	the	platform	were	laid	down	on	M12,	with	the	system	architecture	and	

a	single-cloud	implementation.	At	M24	we	delivered	a	multi-cloud	implementation	of	the	platform,	

which	enabled	scaling	up	of	MapReduce	and	of	the	query	engine	over	multiple	micro-clouds.	In	this	

deliverable,	 we	 describe	 an	 advanced	 distributed	 processing	 platform	 that	 overcomes	 scalability	

issues	and	performance	bottlenecks	of	the	M24	version,	and	improves	stability	and	functionality.	

	

The	main	advancements	for	the	processing	platform	over	the	last	year	are	as	follows.	First,	we	have	

substantially	enhanced	our	multi-cloud	MapReduce	execution	engine.	This	enhancement	drastically	

improved	 stability	 of	 the	 engine	 and	 offers	 increased	 functionality.	 For	 example,	 code	 is	 now	

deployed	 automatically	 across	 the	 micro-clouds	 participating	 in	 the	 computation,	 and	

synchronization	across	phases	occurs	automatically.	 The	new	 implementation	also	 includes	 several	

optimizations	 which	 drastically	 improve	 performance.	 Since	 multi-cloud	 MapReduce	 is	 utilized	

extensively	in	the	project,	e.g.,	from	the	query	execution	engine,	these	performance	improvements	

have	a	large	impact	on	the	project	as	a	whole.	

	

Second,	we	integrated	several	improvements	on	the	query	engine.	These	include:	(a)	the	integration	
of	partial-local	indexes	over	distributed	key	value	stores,	(b)	an	auxiliary,	more	efficient,	storage	for	

quickly	 collecting	 intermediary	query	 results,	 (c)	 a	more	advanced	query	planner	 to	determine	 the	

optimal	utilization	of	indexes,	(d)	a	batch	messaging	platform	to	release	network	congestion,	and	(e)	

the	redesign	and	implementation	of	the	SQL	operators	to	fully	exploit	the	batch	messaging	platform,	

the	indexes,	and	the	auxiliary	storage.	

	

Third,	 we	 produced	 several	 research	 results	 related	 to	 the	 platform,	 some	 of	 which	 are	 also	

integrated	 in	 the	platform.	 These	 include	 sketches	 for	 compact	 statistics	maintenance	 from	within	

the	listeners	(some	of	which	are	already	utilized	for	determining	query	selectivity	by	the	planner)	and	

algorithms	for	distributed	monitoring	of	top-k	and	other	complex	queries.	

	

The	document	is	structured	as	follows.	Section	2	briefly	outlines	the	processing	platform,	discussing	

its	interaction	with	the	whole	LEADS	platform.	Section	3	provides	design	and	implementation	details	

on	the	query	execution	engine.	Section	4	describes	the	multi-cloud	MapReduce	programming	model,	

and	the	involved	implementation	challenges.	In	Section	5	we	briefly	summarize	the	research	results	

of	the	last	year	related	to	WP3.	Section	6	concludes	the	document.	Appendix	A	includes	the	relevant	
scientific	publications	(papers	and	journal	articles).	Finally,	Appendix	B	includes	detailed	instructions	
for	installing	the	platform	in	a	separate	installation.		
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2. Overview	of	the	processing	platform	

	

Figure	1	The	real-time	processing	platform	within	LEADS	

For	completeness,	 in	this	section	we	present	an	overview	of	the	real-time	processing	platform.	The	

platform	was	originally	designed	at	M12	 (deliverable	D3.1)	 and	updated	at	M18	 (deliverable	D3.2)	

and	M24	(deliverable	D3.3).	The	platform	is	responsible	for	offering	the	distributed	data	processing	

and	 querying	 capabilities	 of	 the	 LEADS	 platform.	 It	 interacts	with	WP2	distributed	 storage	 engine,	

and	 with	WP4	 scheduler	 (cf.	 Figure	 1).	 The	 core	 functional	 requirements	 for	 the	 platform	 are	 as	

follows:	

1. Querying	 tools,	 for	 users	 to	 express	 their	 queries	 using	 both	 a	 declarative	 language	 for	
expert	users	and	a	graphical	user	interface	for	novice	users.	

2. Novel	 programming	 models	 and	 tools	 to	 enable	 the	 development	 of	 distributed	 data	

processing	 algorithms	 by	 implementing	 the	 MapReduce	 paradigm	 across	 multiple	 micro-

clouds.		

3. Plugins	 to	 support	 extending	 the	 data	 processing	 capabilities	 of	 the	 LEADS	 platform,	 to	

facilitate	the	development	of	distributed	data	mining	algorithms	using	domain	specific	data	

processing.	

4. Privacy-preserving	 query	 capabilities	 to	 enable	 users	 to	 store	 and	 query	 sensitive	 data	
safely.	

	

The	platform	delivered	at	M36	satisfies	all	described	functional	requirements.	 In	terms	of	querying	

tools,	we	have	introduced	a	command-line	interface	and	a	graphical	user	interface	based	on	Apatar	

Indexable Web

WP3 Query Engine

WP4 Scheduling and 
Data Placement

WP2 Unified Storage and Synchronization Layer

Platform usersUsers generating content

query planquery 
schedule

Plugins

WP1 Data collection

User-aided Distributed 
crawlers

publishing
interface

deploys
stores and 
synchronizes

WP5 application 
from adidas

WP5 Web Graph 
Service

results

queries

Multiple geographically distributed micro-clouds

Quality 
control

managesqueries



Deliverable	D3.4	
Enhanced	LEADS	real-time	processing	platform	and	tools	

INFSO-ICT-318809	 Page	4	
LEADS:	Large-Scale	Elastic	Architecture	for	Data-as-a-Service	LEADS:	Large-Scale	Elastic	Architecture	for	Data-as-a-Service	

mashups
1
.	 Furthermore,	 the	platform	supports	programmatic	 interaction	 for	query	execution	 from	

external	 applications	 through	web	 services.	 These	 functionalities	were	 described	 in	more	 detail	 in	

D3.3	(M24).		

	

Focusing	 on	 enabling	 developers	 to	 fully	 utilize	 the	 unique	 LEADS	 architecture,	we	 developed	 and	

integrated	 a	 novel	 programming	model	 that	 extends	MapReduce	 to	 distributed	micro-clouds.	 The	

model,	which	is	first	described	in	Section	4	of	this	deliverable,	is	a	substantial	extension	over	the	M24	

MapReduce	 engine.	 It	 has	 a	 low	 learning	 curve	 for	 existing	 MapReduce	 developers,	 and	 it	 is	

backward	compatible	with	the	M24	MapReduce	model.	

	

Arbitrary	 real-time	 data	 processing	 is	 supported	 by	 the	 use	 of	 plugins.	 Plugins	 were	 already	

introduced	 in	 M12	 (deliverable	 D3.1),	 and	 made	 available	 over	 multiple	 micro-clouds	 in	 M24	

(deliverable	 D3.3).	 Plugins	 support	 the	 core	 functionalities	 of	 the	 processing	 engine,	 including	

statistics	maintenance	for	query	execution,	PageRank	computation,	and	execution	of	data	extraction	

pipelines	required	for	end-user	applications.	

	

Finally,	 the	 platform	 supports	 privacy-preserving	 point	 queries	 over	 encrypted	 outsourced	 data.	

Privacy-preserving	point	querying	was	described	already	by	M24	(deliverable	D3.3).	The	functionality	

is	available	to	the	users	via	a	web	service.		

	

In	 the	 remainder	 of	 this	 deliverable,	we	 focus	 on	 the	main	 achievements	 of	WP3	 in	 the	 last	 year.	

These	 include	 the	 novel	 MapReduce	 paradigm,	 the	 query	 processing	 engine,	 and	 some	 other	

research	results,	which	are	partially	integrated	in	the	LEADS	platform.		

	

3. The	query	processing	engine	
The	querying	 requirements	 of	 LEADS	users	 are	 supported	by	 a	 distributed	query	 execution	 engine	

that	exploits	the	scalable	storage	capabilities	of	the	LEADS	storage	layer	(Ensemble)	and	the	massive	

computing	 infrastructure	 enabled	 by	 the	 combination	 of	 micro-clouds.	 The	 engine	 supports	 data	

organization	 in	 a	 semi-relational	 format,	 i.e.,	 it	 supports	 fixed-schema	 tables,	 indexes,	 and	 SQL	

queries,	but	in	addition	enables	unbounded-size	string	attributes,	which	are	critical	in	some	contexts,	

e.g.,	 storing	of	 arbitrary	web	content.	 The	query	execution	engine	was	operational	 since	M12	 in	a	

single	micro-cloud,	and	since	M24	over	multi-micro-cloud	setups.	Compared	to	M24	prototype,	the	

M36	 version	 improves	 drastically	 in	 terms	 of	 stability	 and	 performance	 by	 incorporating	 indexes,	

more	 advanced	 distributed	 implementations	 of	 the	 operators,	 a	 better	 query	 planner,	 and	 faster	

auxiliary	local	storage.	

 

3.1. Major	achievements	since	M24	
Support	for	Indexes	
Indexes	have	for	 long	been	utilized	 in	relational	databases	to	enable	fast	execution	of	queries	with	

high	selectivity.	However,	maintaining	distributed	indexes	that	can	scale	across	micro-clouds	is	by	no	

means	straightforward.	It	can	introduce	unfavorable	network	bottlenecks	during	maintenance,	since	

each	 tuple	 update	may	 affect	 both	 the	 node	 storing	 the	 tuple	 and	 a	 remote	 node	 responsible	 for	

																																																													
1 http://www.apatar.com 
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keeping	the	relevant	portion	of	the	index.	Furthermore,	distributed	indexes	are	also	more	difficult	to	

read	efficiently,	practically	disabling	parallelism.	For	example,	the	index	segments	holding	all	tuples	

that	satisfy	a	range	query	predicate	will	be	contiguous,	and	therefore	will	typically	reside	in	a	single	

node	only.	As	such,	adding	more	nodes	in	the	network	will	not	increase	the	degree	of	parallelism	or	

performance	of	the	index.	

	

To	alleviate	these	issues,	in	LEADS	we	maintain	individual	indexes	at	each	node,	containing	only	the	

data	 residing	 in	 the	 node.	 These	 indexes	 are	 created	 and	 maintained	 using	 Apache	 Lucene,	 and	

stored	over	a	local	Infinispan	cache	stored	in	the	node.	To	avoid	excessive	I/O	cost,	indexes	are	built	

only	for	the	attributes	explicitly	asked	by	the	user,	and	not	for	all	attributes	that	are	present	in	the	

tuple.	In	terms	of	querying,	all	scan	operators	are	broadcasted	for	local	execution	to	all	nodes.	If	the	

query	contains	a	selection	on	an	index	attribute,	the	index	is	utilized	to	retrieve	only	the	tuples	from	

the	 index	 that	 satisfy	 the	 selection	 predicate,	 avoiding	 to	 parse	 the	 whole	 data	 set.	 The	 cost	 of	

querying	each	index	is	only	! log %
&

	per	node	',	where	%
&
	denotes	the	size	of	the	local	index	at	the	

node.	 However,	 since	 the	 query	 is	 executed	 in	 parallel	 at	 all	 nodes,	 it	 will	 take	 at	 most	

!(max
&

log	(%
&
))	time	to	locate	and	start	retrieving	the	results	from	the	index,	i.e.,	the	time	required	

to	search	the	largest	of	the	distributed	indexes.	

		

Query	Planner	
To	 enable	 query	 planning,	 we	 extended	 Apache	 TAJO	 [Tajo],	 an	 open-source	 (Apache	 license)	

distributed	query	planner	with	LEADS-specific	functionality.	The	major	addition	to	the	query	planner	

since	 M24	 was	 the	 utilization	 of	 cost-based	 optimization	 for	 selections.	 In	 particular,	 the	 query	

planner	 maintains	 distributed	 selectivity	 statistics	 on	 the	 indexed	 attributes	 of	 each	 table,	 and	

decides	 at	 query	 time	 whether	 the	 scan	 operator	 should	 load	 the	 whole	 data	 set	 at	 each	 node	

(sequential	loading)	or	utilize	the	available	index.	Clearly,	when	the	selectivity	of	the	predicate	is	very	

high	(i.e.,	very	few	tuples	satisfy	the	predicate),	it	makes	sense	to	use	the	index.	On	the	other	hand,	if	

the	predicate	is	not	selective,	it	is	more	efficient	to	parse	the	whole	data	set	and	test	the	predicate	

on	each	tuple.	

	

To	maintain	the	necessary	selectivity	statistics,	the	planner	utilizes	the	plugins	architecture	to	install	

plugins	 on-the-fly	 at	 all	 nodes	 holding	 the	 index.	 The	 statistics	 are	maintained	 using	 a	 distributed	

version	of	Count-Min	sketch	[CM05],	stored	over	an	in-memory	Ensemble	cache.	Particularly,	during	

the	 index	 creation,	 the	 query	 planner	 installs	 a	 plugin	 to	 each	 participant	 node	 in	 the	 Ensemble	

cache,	which	monitors	all	updates.	All	updates	that	cause	a	change	in	the	Lucene	index	also	update	

the	 distributed	 Count-Min	 sketch,	 i.e.,	 collect	 the	 corresponding	 cells	 from	 the	 Ensemble	 cache,	

increase	or	decrease	them	accordingly,	and	commit	them	back	to	the	Ensemble	cache.		

	

Notice	 that	 this	 continuous	maintenance	 of	 the	 distributed	 Count-Min	 sketch	may	 cause	 network	

congestion	at	periods	of	batch	updates,	due	to	the	interaction	with	the	Ensemble	cache.	To	alleviate	

this	issue,	we	introduced	two	optimizations.	First,	during	the	CREATE INDEX	command,	each	node	

builds	 the	 local	 Count-Min	 sketch	 at	 batch,	 and	 writes	 it	 only	 once.	 This,	 essentially,	 makes	 the	

network	 cost	 of	CREATE INDEX	 linear	 with	 the	 number	 of	 nodes,	 and	 not	with	 the	 number	 of	

tuples/records	 in	 the	 table.	 Second,	 during	 the	 maintenance	 phase,	 the	 plugin	 also	 executes	 all	

updates	 in	 a	batch	mode,	 i.e.,	 the	updated	Count-Min	 sketch	 is	 committed	 in	 the	Ensemble	 cache	

every	w	updates,	where	w	is	a	system	parameter	(by	default	set	to	1000).	This	reduces	the	amortized	

cost	per	update,	 since	 the	w	updates	 typically	 touch	overlapping	 cells	 from	 the	Count-Min	 sketch.	

Clearly,	 batching	 on	 the	 plugin	 also	 means	 that	 the	 Count-Min	 sketch	 can	 be	 slightly	 outdated.	

However,	this	cannot	 lead	to	wrong	results	–	 it	can	only	 lead	to	a	sub-optimal	plan	from	the	query	



Deliverable	D3.4	
Enhanced	LEADS	real-time	processing	platform	and	tools	

INFSO-ICT-318809	 Page	6	
LEADS:	Large-Scale	Elastic	Architecture	for	Data-as-a-Service	LEADS:	Large-Scale	Elastic	Architecture	for	Data-as-a-Service	

planner.	In	practice,	as	long	as	the	window	size	w	is	kept	in	the	order	of	thousands,	the	performance	

difference	between	the	optimal	and	the	sub-optimal	plan	is	negligible.	

	

Auxiliary	local	storage	
As	discussed,	the	query	engine	utilizes	the	Ensemble	cache	as	a	storage	layer	for	the	relational	data.	

In	our	M24	prototype,	 the	 intermediary	data	 that	was	produced	by	 the	different	operators	during	

query	execution	was	also	stored	over	the	Ensemble	cache.	However,	 the	Ensemble	cache	does	not	

offer	 an	 efficient	 way	 of	 iterating	 over	 the	 stored	 tuples	 in	 a	 sorted	 order.	 Therefore,	 all	 SQL	

operators	that	required	sorted	access	over	these	intermediary	results	(e.g.,	GROUP BY)	could	not	
be	executed	efficiently.	Instead,	GET	commands	on	sequential	keys	were	typically	resulting	to	cache	

misses,	causing	continuous	loading	of	large	disk	blocks,	out	of	which	a	very	small	portion	was	used.	

Assuming	a	random	order	in	the	persistent	storage,	each	GET	would	cause	a	disk	I/O	access	with	a	

probability	equal	to	1 −
0102&31

4&562&31

,	where	7879':8	denotes	the	number	of	tuples	stored	in	the	cache	

in-memory,	and	;'<=9':8	the	total	number	of	tuples	stored	in	the	cache	(also	in	persistent	storage).	

Since	 main	 memory	 is	 typically	 several	 orders	 of	 magnitude	 smaller	 than	 secondary	 storage,	
0102&31

4&562&31

	typically	becomes	very	close	to	zero	for	Big	Data	management,	making	the	number	of	disk	

I/O	accesses	linear	to	the	number	of	tuples	in	the	Ensemble	cache.	

	

To	 address	 this	 problem,	we	 integrated	 LevelDB	 [LevelDB],	 a	 lightweight	 filesystem-based	 storage	

that	 supports	 storing	 and	 sorted	 loading	 of	 records	 in	 blocks.	 Specifically,	 all	 intermediary	 results	

were	 properly	 partitioned	 using	 the	 Ensemble	 partitioner,	 but	 instead	 of	 being	 written	 to	 the	

Ensemble	cache,	 they	were	written	 to	a	LevelDB	 index	 (local	at	each	node),	which	enabled	storing	

the	tuples	sorted	by	a	pre-selected	attribute.	This,	 in	turn,	provided	a	very	efficient	sorted	iterator,	

since	reading	a	single	disk	block	would	bring	in	the	disk	cache	many	records,	and	in	the	correct	order.	

As	 a	 consequence,	 the	 number	 of	 page	 faults	 and	 disk	 I/O	 accesses	was	 drastically	 reduced	 to	 be	

equal	to	the	number	of	total	blocks	in	LevelDB.	Unfortunately,	inclusion	of	LevelDB	introduced	a	new	

bottleneck,	 for	 storing	 the	 records	 in	 the	 correct	 order	 in	 the	 LevelDB	 index.	 To	 alleviate	 this	

bottleneck,	intermediary	results	were	loaded	using	batch	loading.	Batch	loading	enables	pre-sorting	

of	 a	 large	 number	 of	 new	 tuples	 in	 main	 memory,	 before	 accessing	 the	 file	 system	 to	 make	 the	

changes	permanent,	thereby	reducing	the	number	of	blocks	that	need	to	be	read	and	written	to	the	

filesystem.	

	

Batch	messaging	
As	in	any	distributed	data-intensive	platform,	network	congestion	constitutes	the	major	bottleneck	in	

the	query	engine.	 In	particular,	 some	SQL	operators	 cause	massive	data	 copying	over	 the	network	

(i.e.,	remote	PUTs	over	an	Ensemble	cache)	due	to	their	requirement	that	all	tuples/records	with	the	

same	 key	must	 reside	 in	 the	 same	 node	 for	 the	 operator	 to	 be	 correct.	 For	 example,	 executing	 a	

foreign-key	join	on	two	relations	>1	and	>2	 requires	sending	over	the	network	each	tuple	of	>1	
with	a	probability	of	@A = (% >1 − 1)/%(>1),	where	% >1 	denotes	the	number	of	nodes	storing	

>1.	 Similarly,	 for	 >2,	 this	 probability	 is	@A =
E FG HI

E FG

.	 In	 large	 networks,	 @A	 will	 approximate	 1,	

leading	to	an	extremely	large	number	of	(typically	small)	messages	over	the	network	(one	per	tuple).	

Bloom	 joins	 [Mul90,	 MNP+07,	 RPS08],	 broadcast	 joins	 [SBS+13],	 and	 other	 similar	 techniques	

proposed	 in	 the	 context	of	 distributed	databases	 still	 do	not	 alleviate	 the	problem	 for	 the	 case	of	

foreign-key	joins,	since	all	tuples	typically		participate	in	the	join.	

	

To	alleviate	this	problem,	we	implemented	and	integrated	in	LEADS	a	batch	messaging	system	over	

the	LEADS	storage	layer	and	Ensemble.	The	system	focuses	on	optimizing	the	cross-cloud	messages,	

which	 are	 typically	 several	 orders	of	magnitude	 slower	 than	 the	messages	within	 the	 same	micro-
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cloud.	 The	 batching	 system	 is	 heavily	 utilized	 by	 the	 query	 execution	 engine	 as	 well	 as	 the	

MapReduce	 engine.	 Particularly,	 each	 node	 creates	 a	 message	 queue	 of	 bounded	 size	 s	 for	 each	
micro-cloud,	and	uses	it	to	temporarily	store	all	outgoing	messages	to	this	micro-cloud.	Whenever	a	

queue	 becomes	 full	 or	 after	 a	 timeout,	 the	 node	 packs	 together	 all	 messages	 in	 the	 queue,	

compresses	 them	 using	 an	 efficient	 compression	 algorithm	 (Snappy
2
),	 and	 sends	 them	 to	 the	

corresponding	micro-cloud	 as	 a	 single	message.	 This	 is	 achieved	 via	 a	 remote	PUT	 on	 a	 specially	
constructed	cache.	A	local	listener	installed	on	this	cache	reads	and	decompresses	the	message,	and	

forwards	it	to	the	corresponding	nodes	inside	the	micro-cloud.		

	

Notice	 that	 batch	messaging	 also	 introduced	 the	need	 for	 additional	 synchronization	between	 the	

nodes.	 That	 is,	 batch	 PUTs	 needed	 to	 be	 considered	 as	 an	 asynchronous	 operator,	 since	 the	
individual	PUTs	resulting	by	any	batch	PUT	are	executed	after	the	batch	PUT	function	returns.	This	
issue	 is	 handled	 by	 the	messaging	 system	 transparently,	 such	 that	 any	 developer	 using	 the	 batch	

messaging	 system	 (e.g.,	 for	 MapReduce	 applications)	 can	 focus	 explicitly	 on	 developing	 the	

application	logic	and	not	on	the	intrinsic	behavior	of	batch	messaging.	

	

Reimplementation	of	the	SQL	operators	
Most	SQL	operators	were	re-implemented	to	utilize	the	indexes	and	the	architectural	modifications	

made	 since	 the	M24	 prototype,	 including	 multi-cloud	MapReduce,	 auxiliary	 intermediary	 storage,	

and	 batch	 messaging.	 We	 have	 also	 integrated	 in	 the	 query	 engine	 the	 standard	 Bloom	 Join	

algorithm	 [Mul90],	 which	 enables	 substantial	 network	 savings	 in	 the	 presence	 of	 high-selectivity	

filters	at	any	of	the	relations.	The	new	implementations	improve	the	networking	and	computational	

performance,	and	reduce	the	memory	requirements	of	the	query	engine.	

	

3.2. Experiments	
We	evaluated	the	performance	of	the	query	execution	engine	on	different	configurations	using	the	

AMPLab	benchmark.
3
	The	AMPLab	benchmark	contains	both	a	configurable	data	generation	tool	and	

a	query	generator,	and	is	frequently	used	for	big	data	systems	evaluation.		

3.2.1. Query	generation	and	system	configuration	
To	evaluate	our	engine	we	used	two	types	of	queries:	(a)	the	AMPLab	queries	that	are	generated	by	

the	benchmark	scripts,	and	(b)	a	set	of	additional	–	synthetic	--	queries	on	the	same	data	set.		

	

AMPLab	 scripts	 create	 four	 different	 query	 types.	 Queries	 1-3	 are	 standard	 SQL	 queries,	 whereas	

Query	4	involves	user-defined	functions	implemented	as	external	scripts,	which	is	not	supported	by	

our	query	engine.	We	therefore	focus	on	the	first	three	queries.	All	AMPLab	queries	have	a	very	high	

selectivity,	 i.e.,	 they	 return	 several	 hundreds	 of	 thousands	 of	 results,	 sometimes	 even	 several	

millions	of	 results,	 or	 they	 limit	 the	 size	 of	 the	 results	 at	 the	 last	 step.	 These	 types	of	 queries	 are	

useful	 for	offline	data	mining	and	data	analytics,	e.g.,	 run	a	clustering	algorithm	on	a	subset	of	the	

crawled	web	pages.		

	

In	addition,	we	devised	a	set	of	6	additional	queries	that	are	more	selective	than	the	previous	(i.e.,	

return	 a	 few	 hundreds	 of	 results).	 These	 selective	 queries	 are	 the	 ones	 that	 a	 human	 would	 be	

interested	 to	 execute,	 e.g.,	 via	 an	 API,	 the	 command-line	 interface,	 or	 via	 our	 Apatar-based	 GUI.	

Notice	 that	 these	 queries	 are	 the	 ones	 that	will	 typically	 utilize	 indexing	 functionalities	 and	 clever	

																																																													
2 http://google.github.io/snappy/ 
3 Available at https://amplab.cs.berkeley.edu/benchmark/ 
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distributed	processing	algorithms,	to	avoid	 loading	everything	from	disk	or	shipping	too	much	data	

over	the	network.	Table	1	presents	both	sets	of	queries.	

Table	1	Evaluation	Queries	

Query	id	 Query	

	 AMPLab	queries	
Q1	 SELECT pageURL, pageRank FROM rankings WHERE pageRank > X 

for	X=1000	(Q1a),	100	(Q1b)	
	

Q2	 SELECT SUBSTR(sourceIP, 1, X), SUM(adRevenue) FROM uservisits GROUP BY 
SUBSTR(sourceIP, 1, X) 
for	X=8	(Q2a),	10	(Q2b)	
	

Q3	 SELECT sourceIP, totalRevenue, avgPageRank 
FROM 
  (SELECT sourceIP, 
          AVG(pageRank) as avgPageRank, 
          SUM(adRevenue) as totalRevenue 
    FROM rankings AS R, uservisits AS UV 
    WHERE R.pageURL = UV.destURL 
       AND UV.visitDate BETWEEN Date(`1980-01-01') AND Date(`X') 
    GROUP BY UV.sourceIP) 
  ORDER BY totalRevenue DESC LIMIT 1 
for	X='1980-04-01'	(Q3a),	'1983-01-01'	(Q3b)	
	

	 	 	 Additional	queries	
Q4	 SELECT pageURL, pageRank FROM rankings WHERE pageRank = X 

(executed	with	random	X	values	which	are	contained	in	the	data	set)	

	

Q5	 SELECT sourceIP FROM uservisits WHERE visitDate = Date(X) 
(executed	with	random	dates	X	which	are	contained	in	the	data	set)	

	

Q6	 SELECT pageURL, pageRank FROM rankings WHERE pageRank >= X AND pageRank <= 
Y  
(executed	with	random	X	and	Y	values	which	are	contained	in	the	data	set,	with	Y-X=5)	

	

Q7	 SELECT sourceIP FROM uservisits WHERE visitDate BETWEEN Date(X) AND Date(Y) 
(executed	with	 random	 dates	 X	 and	 Y	which	 are	 contained	 in	 the	 data	 set,	 and	 are	 set	 such	 that	 the	 date	

predicate	covers	two	days)	

	

Q8	 SELECT sourceIP, totalRevenue, avgPageRank 
FROM 
  (SELECT sourceIP, 
          AVG(pageRank) as avgPageRank, 
          SUM(adRevenue) as totalRevenue 
    FROM rankings AS R, uservisits AS UV 
    WHERE R.pageURL = UV.destURL 
       AND UV.visitDate BETWEEN Date(X) AND Date(Y) 
    GROUP BY UV.sourceIP) 
  ORDER BY totalRevenue DESC LIMIT 1 
(executed	with	 random	 dates	 X	 and	 Y	which	 are	 contained	 in	 the	 data	 set,	 and	 are	 set	 such	 that	 the	 date	

predicate	covers	two	days)	

	

Q9	 SELECT SUBSTR(sourceIP, 1, 10), SUM(adRevenue) FROM uservisits WHERE 
visitDate BETWEEN Date(X) AND Date(Y) 
GROUP BY SUBSTR(sourceIP, 1, 10) 
(executed	with	 random	 dates	 X	 and	 Y	which	 are	 contained	 in	 the	 data	 set,	 and	 are	 set	 such	 that	 the	 date	

predicate	covers	two	days)	
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Considered	 configurations.	 The	 considered	 experimental	 setups	 are	 presented	 in	 Table	 2.	 Our	

strategy	on	choosing	the	configurations	was	to	evaluate	how	the	query	engine	scales	with	the	data	

volume,	and	with	the	size	of	the	network	(number	of	nodes	per	micro-cloud,	for	two	micro-clouds).	

All	 reported	 experiments	 were	 executed	 on	 resources	 provided	 by	 project	 partner	 Cloud&Heat	

(micro-clouds	dd1a	and	dd2c).	 The	used	 computing	 resources	were	 shared,	 i.e.,	 the	 real	machines	

were	 hosting	 additional	 virtual	 machines	 (not	 related	 to	 LEADS).	 The	 virtual	 machines	 were	

configured	 with	 4	 cores	 and	 8	 GB	 RAM.	 We	 used	 the	 default	 configuration	 provided	 by	 the	

Bootstrapper	 (cf.	 Appendix	 B.3),	 which	 deploys	 one	 system	 component	 at	 each	 virtual	 machine.	

Infinispan	Ensemble	was	configured	 to	keep	1024	entries	 in	main	memory	per	node,	and	with	128	

MB	 in-memory	cache.	Also,	LevelDB	auxiliary	storage	was	configured	to	use	a	RAM	buffer	 index	of	

maximum	size	32	MB.		

	

In	the	following,	to	avoid	repetition,	we	will	be	reporting	only	the	configuration	values	that	deviate	

from	the	default	values	of	Table	2.	

Table	2	Considered	configurations	

Setting	 Possible	values	(default	values	are	emphasized)	

#tuples	 4	 Million	 per	 table,	 16	 Million	 per	 table,	 All	 data	 (18	 Million	 in	

Rankings,	155	Million	in	userVisits)	

#nodes	per	micro-cloud		 4,	6,	9	
	

3.2.2. Varying	the	data	set	size	
We	 first	 examine	 the	 effect	 of	 the	 data	 set	 size,	 by	 experiments	with	 4	 and	 16	Million	 tuples	 per	

table.	Table	3	presents	the	time	taken	for	answering	the	AMPLab	queries	in	a	deployment	of	2	micro-

clouds	with	4	machines	 each.	Our	 first	 observation	 is	 that	 execution	 time	 for	 the	AMPLab	queries	

increases	 almost	 linearly	 with	 the	 data	 set	 size.	 The	 small	 deviation	 on	 this	 linear	 relation	 is	

attributed	 to	CPU	spikes	due	 to	variances	 in	 the	performance	of	 the	virtual	machines,	e.g.,	due	 to	

network	 load	or	workload	caused	by	other	virtual	machines	that	were	hosted	at	 the	same	physical	

machine.	 This	 linear	 scaling	 is	 normal	 for	 these	 types	 of	 queries,	 since	 traditional	 centralized	

database	 optimizations	 cannot	 be	 utilized	 for	 these	 queries,	 due	 to	 the	 large	 volume	of	 data	 that	

satisfies	 the	 predicates.	 For	 example,	 indexes	 cannot	 help;	 even	 though	 indexes	 can	 be	 used	 for	

quickly	 retrieving	all	 tuple	 ids	 that	satisfy	 the	predicate,	 the	actual	 tuples	still	need	to	be	retrieved	

from	the	distributed	storage	infrastructure	(from	an	Ensemble	cache),	a	time-consuming	task	when	

there	are	many	tuples	in	the	intermediary	result	set.	Therefore,	the	planner	does	not	utilize	indexes	

on	 these	 queries.	 In	 fact,	 since	 sequential	 distributed	 GETs	 are	 substantially	 slower	 than	 batch	

loading	and	iteration	over	all	tuples	(due	to	the	distributed	deployment	of	the	Ensemble	cache),	the	

execution	 planner	 utilizes	 indexes	 only	 for	 fairly	 selective	 queries.	 Also,	 note	 that	 the	 size	 of	 the	

result	 also	 affects	 execution	 time,	 since	 more	 results	 need	 to	 be	 shipped	 over	 the	 participating	

network.	For	example,	Q1a	requires	less	time	than	Q1b,	since	the	former	is	more	selective	than	the	

latter	(the	results	of	Q1a	are	a	subset	of	the	results	of	Q1b).	

	

In	 Table	 4	 we	 present	 the	 required	 execution	 time	 for	 the	 6	 additional	 queries.	 For	 comparison	

purposes,	 we	 present	 time	 with	 and	 without	 indexes.	 Interestingly,	 execution	 time	 with	 indexes	

grows	sub-linearly	with	the	number	of	stored	tuples.	This	happens	because	the	planner	incorporates	

the	 indexes	 for	 answering	 these	 queries,	 which	 enable	 efficient	 (logarithmic-cost)	 retrieval	 of	 the	

tuple	ids	that	belong	in	the	results	without	parsing	the	whole	data	set.	Since	the	number	of	results	

that	 need	 to	 be	 retrieved	 for	 these	 queries	 is	 relatively	 small	 (in	 the	 order	 of	 hundreds	 or	 a	 few	

thousands),	distributed	GETs	over	the	Ensemble	cache	do	not	pose	performance	bottleneck.	
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Table	3	AMPLab	queries	

Tuples	
per	table	

Execution	time	(sec.)	

Q1a	 Q2a	 Q3a	 Q1b	 Q2b	 Q3b	
4	M	 8	 177	 28	 11	 199	 61	

16	M	 22	 687	 95	 30	 738	 257	

Table	4	Additional	queries	

Tuples	
per	table	

Execution	time	(sec.)	

Q4	 Q5	 Q6	 Q7	 Q8	 Q9	
4	M	 WO/Index:8	

W/Index:1	

11	

3	

8	

1	

12	

3	

25	

7	

13	

5	

16	M	 WO/Index:21	

W/Index:1	

41	

3	

21	

1	

40	

3	

67	

7	

45	

5	

Table	5	Experiments	with	the	full	AMPLab	data	set		
(18	Million	in	rankings,	155	Million	in	uservisits,	2	micro-clouds,	9	nodes	each)		

Presence	of	
indexes	

Execution	time	(sec.)	

Q1a	 Q2a	 Q3a	 Q1b	 Q2b	 Q3b	
No	(index	

not	utilized)		

34	 4130	 511	 30	 4280	 2006	

	 Q4	 Q5	 Q6	 Q7	 Q8	 Q9	
No	

Yes	

34	

2	

365	

37	

35	

2	

366	

61	

409	

51	

384	

47	

	
Table	 5	presents	 the	 required	 time	 for	 executing	 the	 same	 queries	 over	 the	 full	 AMPLab	 data	 set	

(table	uservisits	with	155	Million	tuples,	and	table	rankings	with	18	Million	tuples).	To	achieve	better	

performance,	 in	 this	 experiment	 we	 have	 used	 all	 the	 available	 free	 virtual	 machines	 in	 the	 two	

micro-clouds	 (9	 VMs	 per	 micro-cloud).	 As	 expected,	 the	 queries	 require	 more	 time	 due	 to	 the	

increased	data	volume	 (overall	 an	order	of	magnitude	more	 tuples	 in	 table	uservisits	 compared	 to	

the	 16M	 data	 set).	 Nevertheless,	 utilization	 of	 indexes	 drastically	 cuts	 down	 on	 the	 IO	 costs,	 as	

evident,	e.g.,	in	queries	4	and	6,	which	are	plain	selections	with	filters.	Queries	Q5,	Q7,	Q8,	Q9	also	

benefit	 from	 the	 index	 in	 terms	 of	 scanning	 the	 data,	 but	 the	 required	 time	 in	 these	 queries	 is	

dominated	by	the	network	time.		

3.2.3. Varying	the	number	of	nodes	per	micro-cloud	
This	 set	 of	 experiments	 was	 designed	 to	 test	 the	 availability	 of	 the	 system	 to	 scale	 out,	 i.e.,	

incorporate	 the	 capacity	 of	 more	 nodes	 to	 increase	 system	 performance.	 Therefore,	 all	 queries	

described	at	Section	3.2.1	were	executed	in	two	different	settings:	(a)	with	4	nodes	per	micro-cloud,	

and	(b)	with	6	nodes	per	micro-cloud.	

	

Table	6	and	Table	7	present	 the	execution	 time	 for	all	queries.	We	see	 that	querying	performance	

improves	by	adding	more	nodes,	which	is	a	desired	property	for	big	data	systems.	The	scale-up	ratio	

is	 almost	 linear	 for	 the	 AMPLab	 queries,	 i.e.,	 querying	 time	 is	 proportional	 to	 the	 number	 of	

machines.	 This	 happens	 because,	 as	 stressed	 earlier,	 these	 queries	 disable	 traditional	 relational	

databases	optimization	strategies,	such	as	indexes.	
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Interestingly,	the	number	of	nodes	per	micro-cloud	does	not	have	a	substantial	performance	impact	

for	queries	Q4	-	Q9,	when	using	an	index.	For	instance,	Q4	requires	1	second	in	both	deployments.	

This	happens	because	the	generated	query	plans	of	Q4	–	Q9	utilize	indexes,	which	already	improves	

performance	 by	 reducing	 the	 tuples	 that	 need	 to	 be	 loaded	 from	 disk	 (recall	 that	 indexes	 offer	

logarithmic-cost	lookups).	As	such,	adding	more	nodes	has	a	negligible	improvement	on	the	already-

fast	loading	time	(logarithmic	cost),	but	cannot	help	with	the	time	spent	on	network	operations,	e.g.,	

for	shipping	intermediary	results	across	nodes	and	micro-clouds,	which	becomes	the	dominant	cost.	

Nevertheless,	the	ability	of	the	platform	to	run	on	larger	infrastructure	is	pivotal	for	the	scalability	of	

the	system	with	more	data.		

	

Summarizing,	 our	 experiments	 have	 shown	 that	 the	 query	 engine	 scales	 with	 the	 data	 set	 size.	

Scalability	 is	 achieved	 either	 by	 utilizing	 indexes,	 or	 by	 adding	more	 computational	 capacity,	 e.g.,	

more	nodes,	or	more	micro-clouds.	

Table	6	AMPLab	queries	

Nodes	per	
micro-cloud	

Execution	time	(sec.)	

Q1a	 Q2a	 Q3a	 Q1b	 Q2b	 Q3b	
4	 22	 687	 95	 30	 738	 257	

6	 15	 465	 63	 21	 510	 185	

Table	7	Additional	queries	

Nodes	per	
micro-cloud	

Execution	time	(sec.)	

Q4	 Q5	 Q6	 Q7	 Q8	 Q9	
4	 WO/Index:21	

W/Index:1	

41	

4	

21	

1	

40	

4	

67	

9	

45	

5	

6	 WO/Index:16	

W/Index:1	

25	

5	

15	

1	

27	

7	

47	

9	

30	

6	

	

4. MapReduce	for	multiple	micro-clouds	
A	 core	 focus	 of	WP3	was	 to	 enable	 efficient	 arbitrary	 data	 processing	 over	 the	 distributed	micro-

cloud	resources.	Even	though	there	exist	several	industrial-strength	big	data	platforms	for	scalability	

over	 individual	 clusters,	 these	 platforms	 cannot	 be	 deployed	 over	 distributed	 cloud	 resources.	

Towards	 this	 direction,	 in	WP3	we	 implemented	 a	multi-cloud	MapReduce	 engine	 supporting	 the	

traditional	MapReduce	programming	paradigm	(M24),	and	a	new	programming	model	that	 is	more	

suitable	 for	multi-cloud	 architectures	 (M36).	We	 now	 briefly	 overview	 the	 progress	 over	 the	M24	

engine.		

	

The	main	functional	limitation	of	the	M24	engine	was	that	it	did	not	support	automatic	deployment	

of	 arbitrary	 MapReduce	 code;	 manual	 work	 was	 still	 required	 for	 compiling	 and	 uploading	 the	

bytecode	to	the	participating	nodes.	Automatic	deployment	is	supported	in	the	M36	prototype,	i.e.,	

the	 developer	 provides	 the	 bytecode	 and	 required	 libraries	 at	 a	 single	 node,	 and	 everything	 is	

deployed	and	configured	automatically	at	all	nodes	holding	portions	of	the	cache.	

	

In	 terms	 of	 non-functional	 requirements,	 performance	 of	 the	 M36	 implementation	 is	 improved	

compared	 to	 the	 M24	 platform,	 by	 utilizing	 batch	 messaging	 and	 auxiliary	 local	 storage	 (cf.	 also	

Section	3.1).	The	effect	of	batch	messaging	in	multi-cloud	MapReduce	is	substantial,	since	mappers	

generally	create	a	vast	number	of	messages	 (one	per	tuple),	most	of	which	need	to	be	transferred	
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over	 the	 Internet	 to	 different	 micro-clouds.	 By	 batching	 these	 messages	 to	 a	 single	 compressed	

message	we	reduce	network	congestion	and	increase	overall	processing	throughput.		

	

Auxiliary	storage	is	also	used	in	MapReduce,	for	storing	the	output	of	the	Mappers	in	the	nodes	that	

will	execute	the	Reducers.	 In	particular,	Mappers	produce	key-value	pairs,	which	are	partitioned	to	

the	 Reducers	 based	 on	 their	 keys.	 The	 LEADS	 storage	 layer	 and	 Ensemble	 cache	 in	 particular,	

however,	does	not	yet	support	efficient	sorted	iteration	over	all	keys,	which	is	necessary	for	passing	

all	tuples	with	the	same	key	to	the	same	Reducer.	Instead,	for	each	distinct	key	we	need	to	execute	

subsequent	 GETs	 from	 the	 Ensemble	 cache,	 each	 of	 which	 causes	 a	 disk	 I/O	 access	 with	 high	

probability.	To	avoid	this	 issue,	the	 intermediary	results	 from	all	Mappers	were	saved	to	a	LevelDB	

index.	Even	though	the	index	is	stored	in	secondary	memory	(its	performance	is	bounded	by	the	disk	

controller’s	performance),	it	enables	block-based	data	loading.	As	such,	many	subsequent	tuples	are	

loaded	at	each	single	disk	read	operation,	and	all	tuples	with	the	same	key	are	passed	to	the	same	

Reducer	to	execute	the	Reduce	phase.	This	improves	reading	performance	substantially	and	reduces	

disk	I/O	load.	

		

5. Additional	research	results	
In	addition	to	the	described	progress	on	the	query	engine	and	the	multi-cloud	MapReduce	paradigm,	

in	the	last	year	we	conducted	research	activities	in	the	area	of	large-scale	distributed	systems	that	do	

not	belong	in	the	core	of	the	LEADS	real-time	processing	platform,	but	directly	benefit	 it	by	adding	

supportive	functionality.	In	detail,	the	two	major	research	topics	we	contributed	to	were:	

A. Distributed	sketching		

B. Distributed	top-k	monitoring	

Distributed	sketching	 is	 integrated	into	the	platform.	We	decided	not	to	 integrate	distributed	top-k	

monitoring	into	the	platform	due	to	manpower	and	time	budgets.	For	matters	of	completeness	we	

now	briefly	summarize	the	accepted	publications	in	these	topics,	and	explain	how	these	are	related	

to	LEADS.		The	full	publications	can	be	found	in	Appendix	A.	

5.1. Distributed	sketching	
Focusing	on	distributed	data	stream	processing,	 in	[PGD15]	we	considered	the	problem	of	complex	

query	answering	over	distributed,	high-dimensional	data	streams	 in	 the	sliding-window	model.	We	

introduced	a	novel	sketching	technique	(termed	ECM-sketch)	that	allows	effective	summarization	of	

streaming	data	 over	 both	 time-based	 and	 count-based	 sliding	windows	with	 probabilistic	 accuracy	

guarantees.	 ECM-sketch	 enables	 point	 as	 well	 as	 inner-product	 queries,	 and	 can	 be	 employed	 to	

address	a	broad	 range	of	problems,	 such	as	maintaining	 frequency	 statistics,	 finding	heavy	hitters,	

and	computing	quantiles	in	the	sliding-window	model.	

	

The	 core	 of	 the	 sketch	 is	 a	modified	 Count-Min	 sketch	 [CM05].	 Count-Min	 sketches	 alone	 cannot	

handle	the	sliding	window	requirement.	To	address	this	limitation,	ECM-sketches	replace	the	Count-

Min	counters	with	sliding	window	structures,	e.g.,	exponential	histograms	[DGI+02],	or	waves	[GT02].	

Each	counter	is	maintained	as	a	sliding	window,	covering	the	last	N	time	units,	or	the	last	N	arrivals,	

depending	on	whether	we	need	time-based	or	count-based	sliding	windows.	
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Figure	2	Adding	an	element	to	the	ECM-sketch. 
	

Adding	 an	 item	 8	 to	 the	 structure	 is	 similar	 to	 the	 case	 of	 the	 standard	 Count-Min	 sketches.	 The	

process	 for	 time-based	 sliding	 windows	 is	 depicted	 in	 Figure	 2.	 First,	 the	 counters	 in	 position	

(ℎ
&
8 , '),	where	i	�	{1	.	 .	 .	d},	corresponding	to	the	d	hash	functions	are	detected.	For	each	of	the	

counters,	we	register	the	arrival	of	the	 item	at	time	t,	and	remove	all	expired	 information,	 i.e.,	 the	

buckets	 of	 the	 exponential	 histogram	 that	 have	 no	 overlap	 with	 the	 sliding	 window	 range.	 The	

process	for	count-based	sliding	windows	is	similar,	but	instead	of	registering	each	arrival	with	system	

time	t,	we	register	it	with	the	count	of	arrivals	since	the	beginning	of	the	stream.		

	

Query	execution.	A	point	query	(x,	r)	is	a	combination	of	an	item	identifier	x,	and	the	query	range	r	

defined	either	as	the	number	of	time	units	or	the	number	of	arrivals.	Point	queries	are	executed	as	

follows.	The	query	item	is	hashed	to	the	d	counters	at	positions	(ℎ
&
L , '),	where	i	�	{1	.	.	.	d},	and	

the	estimate	of	each	counter	M ℎ
&
L , ', A 	for	the	query	range	is	computed.	The	estimate	value	for	

the	frequency	of	x	in	r	is	min
&

M ℎ
&
L , ', A .	Similar	expressions	exist	for	estimating	quantiles	and	L2	

norms.		

	

Distributed	 sketching	 and	 LEADS.	 ECM-sketches	 support	 continuous	 queries	 over	 distributed	

streams.	 In	 particular,	 streams	 are	 partitioned	 to	 the	 available	 nodes,	 and	monitored	 in	 real-time.	

Each	node	updates	 a	 local	 instance	of	 the	 sketch,	 and	 runs	 all	 registered	 continuous	queries	 (e.g.,	

frequency,	 top-k,	 L2	norm	queries)	over	 this	 local	 instance,	by	 converting	 the	queries	 to	 threshold	

crossing	queries	and	exploiting	the	geometric	method	for	distributed	monitoring	[SSK04].	The	 local	

sketches	 are	 sent	 to	 the	 coordinator	 only	 when	 an	 update	 causes	 a	 threshold	 crossing	 of	 the	

geometric	method.	

	

ECM-sketches	are	highly	related	to	LEADS,	since	LEADS	handles	fast	data	streams	over	a	distributed	

network.	As	 such,	we	have	 integrated	ECM-sketches	 in	 LEADS	as	a	 library.	 Since	ECM-sketches	are	

focused	on	stream	processing,	this	library	is	made	accessible	from	within	the	plugins	architecture	of	

LEADS,	which	supports	stream	monitoring.	

5.2. Distributed	Top-k	monitoring	
Focusing	 on	 large-scale	 stream	 monitoring,	 in	 [SRS+15]	 we	 tackle	 the	 more	 specific	 problem	 of	

detecting	 the	 most-frequent	 (top-k)	 items	 from	 high-rate	 event	 streams.	 	 The	 collection	 of	

aggregates	and	statistical	metrics	over	online	data	streams	has	attracted	considerable	attention	from	

both	academia	and	industry	over	the	past	decade.	 	Mining	the	properties	of	such	data	streams	can	

be	 used	 in	 various	 contexts,	 ranging	 from	 targeted	 advertisement	 [CJE14]	 to	 automated	 virus	

detection	[SEV+04].		

	

We	propose	TOPiCo,	a	protocol	that	computes	the	most	popular	events	across	geo-distributed	sites	

in	 a	 low	 cost,	 bandwidth-efficient	 and	 timely	 manner.	 TOPiCo	 starts	 by	 building	 the	 set	 of	 most	
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popular	events	locally	at	each	site.	Then,	it	disseminates	only	events	that	have	a	chance	to	be	among	

the	most	popular	ones	across	all	sites,	significantly	reducing	the	required	bandwidth.		

	

We	consider	the	following	motivating	scenario.	Several	geo-distributed	micro-clouds	produce	events,	

and	each	of	them	maintains	the	top-k	frequent	items	over	a	sliding	window,	allowing	observing	the	

trends	for	a	particular	region.	Simultaneously,	we	are	also	interested	in	computing	the	most	frequent	

items	 at	 the	 scale	 of	 the	 geo-distributed	 infrastructure	 formed	 by	 all	 micro-clouds.	 We	 are	 thus	

interested	 in	 maintaining	 the	 global	 top-k	 frequent	 items	 in	 a	 multi-site	 information	 system.	 The	

global	top-k	frequent	 items	set	 is	referred	as	G	 in	the	remainder	of	this	summary.	We	assume	that	

each	site	maintains,	using	an	existing	single-site	algorithm,	the	local	top-k	frequent	items	for	its	own	

stream.	

	

In	a	nutshell,	at	each	site	TOPiCo	executes	the	following	two	tasks:		(Update)	Site	i	computes	locally	a	

list	of	candidates	items	that	it	broadcasts	together	with	their	local	number	of	occurrences	to	all	sites.	

(Disseminate)	Upon	receiving	a	list	of	candidates	from	some	distant	site	 j,	a	site	 i	updates	its	global	
view	 of	 the	 most	 frequent	 items	 Gi.	 To	 that	 end,	 i	 first	 sums-up	 for	 each	 item	 the	 contribution	

received	 in	the	candidate	 lists	 from	the	other	sites	(such	contribution	equals	0,	 if	 the	 item	was	not	

received).	 Then,	 site	 i	 sorts	 the	 global	 contributions	 and	 outputs	 Gi.	 TOPiCo	 constructs	 a	 list	 of	
candidates	 by	 determining	 at	 each	 site	 a	 value	 l	 ≥	k	 for	which	 the	 top-l	 ranked	 items	 in	 Li	 have	 a	

chance	 to	enter	 in	G.	Such	an	estimation	 is	based	on	 (i)	 the	global	number	of	occurrences	of	each	

item	among	the	top-k	in	Gi,	(ii)	the	number	of	occurrences	of	each	items	in	Li,	and	(iii)	the	candidates	

received	by	remote	sites.	

	

Further	details,	such	as	a	proof	of	correctness	and	an	extensive	evaluation	on	real-world	data	traces	

can	be	found	in	[SRS+15].	

	

TOPiCo	and	LEADS.	The	TOPiCo	proposal	is	particularly	relevant	in	the	context	of	LEADS.	We	consider	

the	 streams	originating	 from	 the	web-crawlers	 operating	 at	 the	micro-cloud	 level.	 Periodically,	 i.e.	

after	each	crawling	round,	locally	at	each	site	a	crawler	needs	to	decide	which	are	the	most	relevant	

sites	 to	crawl,	a	process	 that	 typically	 involves	 the	execution	of	a	PageRank	algorithm.	The	TOPiCo	

algorithm	 can	 be	 easily	 integrated	 in	 the	 LEADS	 plugin	 architecture,	 and	 can	 be	 used	 to	 drive	 an	

alternative	prioritization	strategy	for	the	crawling	process.		
	

5.3. Work	in	progress	
In	 addition	 to	 the	 accepted	 papers,	 WP3	 participants	 are	 currently	 preparing	 several	 new	

submissions,	to	disseminate	the	project	results:	

	

- Ioannis	 Demertzis,	 Stavros	 Papadopoulos,	 Odysseas	 Papapetrou,	 Antonios	 Deligiannakis,	

Minos	 Garofalakis:	 Practical	 Private	 Range	 Search	 Revisited	 (under	 revision	 for	 the	 ACM	

SIGMOD'2016	Conference).	

Relation	to	the	project:	The	paper	proposes	a	privacy-preserving	approach	for	range	queries	

on	outsourced	data.	It	is	conducted	in	the	context	of	Task	3.4,	and	parts	of	it	were	integrated	

in	the	project	already	at	the	M24	milestone.	

- Odysseas	 Papapetrou,	 Minos	 	 Garofalakis:	 	 Monitoring	 Distributed	 Fragmented	 Skylines	

(under	revision	for	IEEE	Transactions	on	Knowledge	and	Data	Engineering).		

Relation	 to	 the	 project:	 The	 article	 proposes	 a	 distributed	 algorithm	 for	 monitoring	

fragmented	 skylines	 that	 can	 scale	 over	wide	 area	 networks	with	 limited	 bandwidth	 (e.g.,	

Internet,	 as	 opposed	 to	 Ethernet/LAN).	 The	 LEADS	 multi-cloud	 platform	 is	 an	 ideal	
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deployment	infrastructure	for	this	algorithm,	due	to	the	(possibly)	weak	Internet	connection	

across	micro-clouds.	

- Ioakim	 Perros,	 Nikolaos	 Pavlakis,	 Odysseas	 Papapetrou,	 Minos	 Garofalakis:	 Distributed	

Stochastic	Pagerank	Maintenance	over	Streaming	Graphs	(in	preparation).		

Relation	 to	 the	 project:	 Although	 there	 have	 been	 earlier	 works	 on	 streaming	 PageRank	

maintenance,	 none	of	 the	works	 enabled	 the	participating	 nodes	 to	 be	widely	 distributed,	

e.g.,	 across	micro-clouds.	 This	 is	 an	 inherent	 requirement	 in	 the	 context	 of	 LEADS.	 In	 this	

paper	 we	 propose	 a	 stochastic	 PageRank	 maintenance	 algorithm	 that	 drastically	 reduces	

network	requirements	between	micro-clouds.	The	algorithm	is	one	of	the	core	tools	offered	

in	WP3	as	a	plugin.	

6. Conclusion	
This	deliverable	described	the	final	LEADS	real-time	processing	platform	developed	in	the	context	of	

WP3.	Our	discussion	 focused	on	 the	 advancement	 in	 the	MapReduce	 execution	 engine	 and	 in	 the	

query	engine	since	M24.	In	terms	of	MapReduce,	we	proposed	a	novel	programming	paradigm	(first	

described	 in	 this	deliverable),	which	enables	developers	 to	 introduce	a	partial	 reduce	phase	 inside	

each	 micro-cloud,	 thereby	 drastically	 reducing	 data	 transfer	 across	 micro-clouds.	 In	 terms	 of	 the	

query	 engine,	 we	 presented	 several	 advancements	 over	 the	 M24	 engine,	 with	 performance	

improvements	by	several	orders	of	magnitude	for	some	queries	(mostly	the	highly	selective	queries,	

but	also	 simple	 iceberg	queries).	Among	 the	main	 improvements,	we	can	mention	 indexes,	a	 cost-

based	 planner,	 and	 a	 local	 auxiliary	 storage	 at	 each	 node	 to	 improve	 computational	 and	 I/O	

performance,	and	a	batch	messaging	system	for	optimizing	network	resources.	The	deliverable	also	

includes	summary	of	 the	research	results	delivered	by	WP3	partners	 in	 the	 last	year.	Furthermore,	

detailed	 deployment	 instructions	 for	 the	whole	 data	 processing	 and	 query	 engine	 are	 included	 in	

Appendix	B.	
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Appendix	A. 		Publications	
The	 following	 two	publications	 accepted	within	 2015	 are	 relevant	 to	WP3	 and	were	 supported	by	

LEADS.	

	

• Odysseas	 Papapetrou,	 Minos	 N.	 Garofalakis,	 Antonios	 Deligiannakis:	 Sketching	 distributed	

sliding-window	data	streams.	VLDB	J.	24(3):	345-368	(2015).	

• Valerio	 Schiavoni,	 Etienne	 Rivière,	 Pierre	 Sutra,	 Pascal	 Felber,	 Miguel	 Matos,	 Rui	

Oliveira:TOPiCo:	Detecting	most	frequent	items	from	multiple	high-rate	event	streams.	DEBS	

2015:	58-67.	
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Sketching Distributed Sliding-Window Data Streams

Odysseas Papapetrou · Minos Garofalakis · Antonios Deligiannakis

the date of receipt and acceptance should be inserted later

Abstract While traditional data-management systems fo-
cus on evaluating single, ad-hoc queries over static data sets
in a centralized setting, several emerging applications re-
quire (possibly, continuous) answers to queries on dynamic
data that is widely distributed and constantly updated. Fur-
thermore, such query answers often need to discount data
that is “stale”, and operate solely on a sliding window of
recent data arrivals (e.g., data updates occurring over the
last 24 hours). Such distributed data streaming applications
mandate novel algorithmic solutions that are both time- and
space-efficient (to manage high-speed data streams), and also
communication-efficient (to deal with physical data distri-
bution). In this paper, we consider the problem of complex
query answering over distributed, high-dimensional data
streams in the sliding-window model. We introduce a novel
sketching technique (termed ECM-sketch) that allows effec-
tive summarization of streaming data over both time-based
and count-based sliding windows with probabilistic accu-
racy guarantees. Our sketch structure enables point as well
as inner-product queries, and can be employed to address
a broad range of problems, such as maintaining frequency
statistics, finding heavy hitters, and computing quantiles in
the sliding-window model. Focusing on distributed environ-
ments, we demonstrate how ECM-sketches of individual,
local streams can be composed to generate a (low-error)

The final publication is available at Springer via
http://dx.doi.org/10.1007/s00778-015-0380-7.
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ECM-sketch summary of the order-preserving merging of
all streams; furthermore, we show how ECM-sketches can
be exploited for continuous monitoring of sliding-window
queries over distributed streams. Our extensive experimen-
tal study with two real-life data sets validates our theoreti-
cal claims and verifies the effectiveness of our techniques.
To the best of our knowledge, ours is the first work to ad-
dress efficient, guaranteed-error complex query answering
over distributed data streams in the sliding-window model.

1 Introduction

The ability to process, in real time, continuous high-volume
streams of data is a common requirement in many emerging
application environments. Examples of such applications in-
clude, sensor networks, financial data trackers, and intrusion-
detection systems. As a result, in recent years, we have seen
a flurry of activity in the area of data-stream processing.
Unlike conventional database query processing that requires
several passes over a static, archived data image, data-stream
processing algorithms often rely on building concise, ap-
proximate (yet, accurate) sketch synopses of the input streams
in real time (i.e., in one pass over the streaming data). Such
sketch structures typically require small space and update
time (both significantly sublinear in the size of the data),
and can be used to provide approximate query answers with
guarantees on the quality of the approximation. These an-
swers can be more than sufficient for typical exploratory
analysis of massive data, where the goal is to detect inter-
esting statistical behavior and patterns rather than obtain an-
swers that are precise to the last decimal. Large-scale stream
processing applications are also inherently distributed, with
several remote sites observing their local stream(s) and ex-
changing information through a communication network.
This distribution of the data naturally imposes critical
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communication-efficiency requirements that prohibit naı̈ve
solutions that centralize all the data, due to its massive vol-
ume and/or the high cost of communication (e.g., in sen-
sornets). Communication efficiency is particularly important
for distributed event-monitoring scenarios (e.g., monitoring
sensor or IP networks), where the goal is real-time tracking
of distributed measurements and events, rather than one-shot
answers to sporadic queries [33].

Several query models for streaming data have been ex-
plored over the past decade. Streaming data items naturally
carry a notion of “time”, and, in many applications, it is im-
portant to be able to downgrade the importance (or, weight)
of older items; for instance, in the statistical analysis of trends
or patterns in financial data streams, data that is more than a
few months old might be considered “stale” and irrelevant.
Various time-decay models for querying streaming data have
been proposed in the literature, mostly differentiating on the
relation of an item’s weight to its age (e.g., exponential or
polynomial decay [7]). The sliding-window model [16] is
one of the most prominent and intuitive time-decay mod-
els that considers only a window of the most recent items
seen in the stream thus far (i.e., items outside the window
are “aged out” or given a weight of zero). The window itself
can be either time-based (i.e., items seen in the last N time
units) or count-based (i.e., the last N items). Several algo-
rithms have been proposed for maintaining different types
of statistics over sliding-window data streams while requir-
ing time and space that is significantly sublinear (typically,
poly-logarithmic) in the window size [16,21,32,34]. Still,
the bulk of existing work on the sliding-window model has
focused on tracking basic counts and other simple aggre-
gates (e.g., sums) over one-dimensional streams in a cen-
tralized setting. Recent work has also considered the case of
distributed data; however, no existing techniques can handle
flexible, complex aggregate queries over rapid, high-dimen-
sional distributed data streams, e.g., with each dimension
corresponding to the number of packets originating by an IP
address, and the number of possible IP addresses reaching
2

48 for IPv6.

Example: Recent work on effective network-monitoring sys-
tems (e.g., for detecting DDoS attacks or network-wide anoma-
lies in large-scale IP networks) has stressed the importance
of an efficient distributed-triggering functionality [26,28,
24,23]. In their early work, Jain et al. [26] discuss a generic
distributed attack-detection scheme relying on the ability to
maintain frequency statistics for high-dimensional data over
sliding windows. In particular, each node (e.g., a network
router implementing Cisco’s Netflow protocol, a wireless
access point, or a peer in a P2P network) maintains a sliding-
window count of all observed messages for each target IP
address. If this count exceeds a pre-determined threshold,
which is determined based on the capacity of the target ma-
chine (possibly expressing the fair share of each client to the

target machine), an event is triggered to a central coordinator
as a warning of possible overloading. The coordinator then
collects network-wide statistics to monitor overloaded nodes
or abnormal behavior. More recent efforts have focused on
different variants and extensions of this basic scheme, of-
ten requiring more extensive data/statistics collection and
more sophisticated analyses [24,23]. (Note that such data
collection mechanisms are supported by commercial prod-
ucts, such as the Cisco Netflow Collection Engine solution.)

The ability to efficiently summarize high-dimensional
data over sliding windows is obviously crucial to such mon-
itoring schemes, given the tremendous volume of network-
data streams and their massive domain sizes (e.g., 248 for
IPv6 addresses). This raises a critical need for synopsis data
structures that can compactly capture accurate frequency sta-
tistics for a vast domain space over sliding windows. Fur-
thermore, to enable the coordinator to aggregate data com-
ing from different nodes (a requirement for detecting DDoS
attacks), we need to be able to compose individually con-
structed synopses to a single synopsis which can capture the
global state of the network and help isolate network-wide
abnormalities. Thus, we are faced with the difficult chal-
lenge of designing effective, composable synopses that can
support potentially complex sliding-window analysis queries
over massive, distributed network-data streams. ut

Note that similar requirements are frequently observed
in other domains, e.g., for identifying misbehaving nodes in
large wireless networks, for training of classifiers with dis-
tributed training data that expires over time, and for ranking
products in a cloud-based e-shop, based on the number of
recent visits of each product.

Our Contributions. In this paper, we consider the problem
of answering potentially complex continuous queries over
distributed, high-dimensional data streams in the sliding-
window model. Our contributions can be summarized as
follows.

• ECM-Sketches for Sliding-Window Streams. We intro-
duce a novel sketch synopsis (termed ECM-sketch) that al-
lows effective summarization of streaming data over both
time-based and count-based sliding windows with proba-
bilistic accuracy guarantees. In a nutshell, our ECM-sketch
combines the well-known Count-Min sketch structure [11]
for conventional streams with state-of-the-art tools for sliding-
window statistics. The end result is a sliding-window sketch
synopsis that can provide provable, guaranteed-error perfor-
mance for point, as well as inner-product, queries, and can
be employed to address a broad class of queries, such as
maintaining frequency statistics, finding heavy hitters, and
computing quantiles in the sliding-window model.

• Time-based Sliding Windows over Distributed Streams.
Focusing on distributed environments, we demonstrate how
ECM-sketches summarizing time-based sliding windows of
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individual streams can be composed to generate a guaranteed-
error ECM-sketch synopsis of the order-preserving merg-
ing of all streams. While conventional Count-Min sketches
are trivially composable, composing ECM-sketches is more
challenging since it requires merging of the sliding-window
statistics maintained in the sketch. Therefore, as part of our
merging solution for ECM-sketches, we also provide the
theoretical foundations and an efficient algorithm for merg-
ing sliding window statistics of deterministic algorithms [16,
21]. This is an important result on its own given the wide ap-
plicability of these algorithms, as well as their substantially
higher efficiency and compactness compared to randomized
sliding window algorithms, which are more easily compos-
able [21,35]. This increased efficiency comes at the cost of
a slight inflation of the worst-case error guarantee due to the
composition, which however can be easily controlled, even
in large hierarchical networks with iterative mergings.

• Continuous Query Monitoring for Complex Queries
over Distributed Streams. We show how ECM-sketches
can be exploited in the context of the geometric framework
of Sharfman et al. [33] for continuous monitoring of sliding-
window queries over distributed streams. We demonstrate
the sketch-enhanced geometric framework by addressing two
frequent requirements of distributed stream monitoring ap-
plications: (a) maintaining the set of items with a frequency
surpassing a threshold (e.g., the IP addresses that exchange
an excessive amount of messages over a sliding window),
and, (b) maintaining an estimate for the self-join size of a
stream over the sliding window, a useful measure for con-
structing efficient distributed query execution plans. Empow-
ered by the compactness and efficiency of the underlying
sketches, the geometric framework can now monitor such
queries in a both computational-efficient and network-efficient
manner.

• Experimental Study and Validation. We perform a thor-
ough experimental evaluation of our techniques using two
massive real-life data sets, in both centralized and distributed
settings. The results of our study verify the efficiency and
effectiveness of our ECM-sketch synopses in a variety of ap-
plications, and expose interesting functional trade-offs. When
compared to algorithms based on randomized sliding win-
dow synopses – which are the only ones that were consid-
ered for composition up to now – ECM-sketches reduce the
memory and computational requirements by at least one or-
der of magnitude with a very small loss in accuracy. Similar
savings apply to the network requirements.

2 Related Work

Centralized and Distributed Data Streams. Most prior
work on data-stream processing has focused on developing
space-efficient, one-pass algorithms for performing a wide

range of centralized, one-shot computations on massive data
streams; examples include computing quantiles [22], esti-
mating distinct values [19], counting frequent elements (i.e.,
“heavy hitters”) [6,10], and estimating join sizes and stream
norms [1,11]. Out of these efforts, flexible, general-purpose
sketch summaries, such as the AMS [1] and the Count-Min
sketch [11] have found wide applicability in a broad range of
stream-processing scenarios. More recent efforts have also
concentrated on distributed-stream processing, proposing
communication-efficient streaming tools for handling a num-
ber of query tasks, including distributed tracking of sim-
ple aggregates [30], quantiles [9], and join aggregates [8],
as well as monitoring distributed threshold conditions [33].
All the above-referenced works assume a traditional, “full-
history” data stream and do not address the issues specific
to the sliding-window model.

Sliding-Window Stream Queries. As mentioned earlier, the
bulk of existing work on the sliding-window model has fo-
cused on algorithms for maintaining simple statistics, such
as basic counts and sums, in space and time that is signifi-
cantly sub-linear (typically, poly-logarithmic) in the sliding-
window size N . Exponential histograms [16] are a state-of-
the-art deterministic technique for maintaining ✏-approximate
counts and sums over sliding windows, using O(

1

✏

log

2 N)

space. Deterministic waves [21] solve the same basic count-
ing/summation problem with the same space complexity as
exponential histograms, but improve the worst-case update
time complexity to O(1); on the other hand, randomized
waves [21] rely on randomization through hashing to track
duplicate-insensitive counts (i.e., COUNT-DISTINCT aggre-
gates) over sliding windows. While randomized waves can
be easily composed (in distributed settings), they come with
an increased space requirement of O(

log(1/�)

✏

2 log

2 N), where
� is a small probability of failure. Xu et al. [35] describe a
randomized, sampling-based synopsis, very similar to ran-
domized waves, for tracking sliding-window counts and sums
with out-of-order arrivals (e.g., due to network delays) in a
distributed setting. As with randomized waves, their space
requirements are also quadratic in the inverse approximation
error; furthermore, their approach requires knowledge of the
maximum number of elements in any sliding window (to
set up the synopsis data structure), which could be problem-
atic in dynamic, widely-distributed environments. Cormode
et al. [14] also propose randomized techniques for handling
out-of-order arrivals for tracking duplicate-insensitive slid-
ing window aggregates. To address the high cost associated
with randomized data structures, Busch and Tirthapura pro-
pose a deterministic structure for handling out-of-order ar-
rivals in sliding windows [3]. Similar to the other determin-
istic structures, this structure also does not allow composi-
tion and focuses only on basic counts and sums.

More recent works develop protocols for efficient con-
tinuous monitoring of sliding window aggregates over dis-
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tributed architectures [5,12,13,15]. These techniques typi-
cally focus on reducing the network requirements for main-
taining random samples or simple statistics (such as basic
counts, heavy hitters, and quantiles) with accuracy guaran-
tees. Some aspects of these techniques could find use in the
case of ECM-sketches as well. In this work we have selected
to build the continuous monitoring scheme over the geomet-
ric method. The geometric method goes beyond monitoring
simple linear aggregates, by enabling distributed monitoring
of (possibly) complex functions that can be expressed over
the average values of the monitored variables, e.g., self-join
and inner product sizes. As such, we are able to monitor any
function that can be supported by the ECM-sketch.

Going beyond counts, sums, and simple aggregates, there
is surprisingly little work in the more general problem of
maintaining general, frequency-distribution synopses over
high-dimensional streaming data in the sliding-window model.
Hung and Ting [25] and Dimitropoulos et al. [17] propose
synopses based on Count-Min sketches for tracking heavy
hitters and frequency counts over sliding windows; still, their
techniques rely on keeping simple equi-width counters within
the sketch, and, thus, cannot provide any meaningful er-
ror guarantees, especially for small query ranges. Similarly,
the hybrid histograms of Qiao et al. [32] combine exponen-
tial histograms with simplistic equi-width histograms for an-
swering sliding-window range queries; again, these struc-
tures cannot give meaningful bounds on the approximation
error and cannot be composed in a distributed setting.

Chakrabati et al. briefly sketched the combination of Count-
min sketches and exponential histograms for computing the
entropy of a stream over a sliding window [4]. Compared to
that work, our work goes several steps forward. First, we
provide important materialization details, which were not
discussed in [4]. For example, we show how to automati-
cally choose the sketch configuration that satisfies the accu-
racy requirements and minimizes space complexity. Second,
we present merging algorithms for ECM-sketches (even the
ones that are based on deterministic sliding window algo-
rithms), which are necessary in many domains involving dis-
tributed stream processing. Finally, we present algorithms
for distributed continuous monitoring using ECM-sketches.

An early version of this work has previously appeared
in [31]. Compared to [31], in this article we follow a more
rigorous analysis, which leads to tighter theoretical error
bounds, and to substantial reduction of the size of the sketch.
Sketch size is typically reduced by a factor of three for ECM-
sketches based on deterministic sliding window algorithms,
and by a factor of six for the ones based on randomized
algorithms. Furthermore, we elaborate on continuous func-
tion monitoring with ECM-sketches, which was only briefly
mentioned in the original paper. This elaboration includes
a novel efficient monitoring algorithm, accompanied with

proof of correctness, and with extensive experimental eval-
uation.

3 Preliminaries

ECM-sketches combine the functionalities of Count-Min
sketches [11] and exponential histograms [16]. We now de-
scribe the two structures, focusing on the aspect related to
our work.

Count-Min Sketches. Count-Min sketches are a widely ap-
plied sketching technique for data streams. A Count-Min
sketch is composed of a set of d hash functions, h

1

(·), h
2

(·),
. . ., h

d

(·), and a 2-dimensional array of counters of width w
and depth d. Hash function h

j

corresponds to row j of the
array, mapping stream items to the range of [1 . . . w]. Let
CM [i, j] denote the counter at position (i, j) in the array.
To add an item x of value v

x

in the Count-Min sketch, we
increase the counters located at CM [j, h

j

(x)] by v
x

, for j 2
[1 . . . d]. A point query for an item q is answered by hash-
ing the item in each of the d rows and getting the minimum
value of the corresponding cells, i.e., min

d

j=1

CM [j, h
j

(q)].
Note that hash collisions may cause estimation inaccura-
cies – only overestimations. By setting d = dln(1/�)e and
w = de/✏e, where e is the base of the natural logarithm, the
structure enables point queries to be answered with an er-
ror of less than ✏||a||

1

, with a probability of at least 1 � �,
where ||a||

1

denotes the number of items seen in the stream.
Similar results hold for range and inner product queries.

Exponential Histograms. Exponential histograms [16] are
a deterministic structure, proposed to address the basic count-
ing problem, i.e., for counting the number of true bits in the
last N stream arrivals. They belong to the family of methods
that break the sliding window range into smaller windows,
called buckets or basic windows, to enable efficient mainte-
nance of the statistics. Each bucket contains the aggregate
statistics, i.e., number of arrivals and bucket bounds, for
the corresponding sub-range. Buckets that no longer over-
lap with the sliding window are expired and discarded from
the structure. To compute an aggregate over the whole (or a
part of) sliding window, the statistics from all buckets over-
lapping with the query range are aggregated. For example,
for basic counting, aggregation is a summation of the num-
ber of true bits in the buckets. A possible estimation er-
ror can be introduced due to the oldest bucket inside the
query range, which usually has only a partial overlap with
the query. Therefore, the maximum possible estimation er-
ror is bounded by the size of the last bucket.

To reduce the space requirements, exponential histograms
maintain buckets of exponentially increasing sizes. Bucket
boundaries are chosen such that the ratio of the size of each
bucket b with the sum of the sizes of all buckets more recent
than b is upper bounded. In particular, the following invari-
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Notation Description
N Length of the sliding window, in time units or

in number of arrivals
h
i

(·) Hash function i of the Count-Min sketch
a
r

, b
r

Substream of stream a, b, within the query
range r

f
a

(x, r) Frequency of item x in stream a, within the
query range r

E
a

(i, j, r) Estimated value of the ECM-sketch counter
for stream a in position (i, j) for query range
r

a
r

� b
r

, \a
r

� b
r

Real and estimated inner product of a
r

and b
r

u(N,S) Upper bound of number of arrivals on stream
S within the sliding window of length N

Table 1 Frequently used notation.

ant (invariant 1) is maintained for all buckets j: C
j

/(2(1 +P
j�1

i=1

C
i

))  ✏ where ✏ denotes the maximum acceptable
relative error and C

j

denotes the size of bucket j (number
of true bits arrived in the bucket range), with bucket 1 being
the most recent bucket. Queries are answered by summing
the sizes of all buckets that fully overlap the query range,
and half of the size of the oldest bucket, if it partially over-
laps the query. The estimation error is solely contained in
the oldest bucket, and is therefore bounded by this invariant,
resulting to a maximum relative error of ✏.

4 ECM-Sketches

We now describe ECM-sketches (short for Exponential
Count-Min sketches), a composable sketch for maintaining
data stream statistics over sliding windows in distributed
environments. ECM-sketches combine the functionality of
Count-Min sketches and sliding windows, and support both
time-based and count-based sliding windows under the cash
register model. Therefore, they can be used for compactly
summarizing high-dimensional streams over sliding windows,
i.e., to maintain the observed frequencies of the stream items
within the sliding window range.

The core of the structure is a modified Count-Min sketch.
Count-Min sketches alone cannot handle the sliding win-
dow requirement. To address this limitation, ECM-sketches
replace the Count-Min counters with sliding window struc-
tures. Each counter is maintained as a sliding window, cov-
ering the last N time units, or the last N arrivals, depending
on whether we need time-based or count-based sliding win-
dows.

As discussed in Section 2, there have been several al-
gorithms proposed for sliding window maintenance. Due to
the large expected number of sliding window counters in
ECM-sketches, we require an algorithm with a small mem-
ory footprint. Existing randomized algorithms for sliding
window synopses (as discussed in Section 2) appear to have
a quadratic dependence to ✏ and are therefore not good for

Fig. 1 Adding an element to the ECM-sketch.

our purposes. Instead, we employ exponential histograms, a
compact and efficient deterministic synopsis [16]. Each of
the Count-Min counters is implemented as an exponential
histogram, configured to provide an ✏ approximation for any
query within a sliding window of length N , i.e., the estima-
tion x̂ of the counter for any query range within the sliding
window length is in the range of (1 ± ✏)x of the true value
x of the counter. We will be discussing our choice for ex-
ponential histograms again in more detail in the following
section, where we will consider alternative deterministic and
randomized algorithms.

Adding an item x to the structure is similar to the case
of standard Count-Min sketches. The process for time-based
sliding windows is depicted in Figure 1. First, the counters
CM [j, h

j

(x)], where j 2 {1 . . . d}, corresponding to the
d hash functions are detected. For each of the counters, we
register the arrival of the item at time t, and remove all ex-
pired information, i.e., the buckets of the exponential his-
togram that have no overlap with the sliding window range.
The process for count-based sliding windows is similar, but
instead of registering each arrival with system time t, we
register it with the count of arrivals since the beginning of
the stream.

The challenges that need to be addressed for the integra-
tion of exponential histograms with Count-Min sketches are:
(a) to take into account the additional error introduced by
the sliding window counters for deriving the accuracy guar-
antees for ECM-sketches (presented in the remainder of this
section), and, (b) to enable composition of a set of ECM-
sketches to a single ECM-sketch representing the order-pre-
serving merging of the corresponding individual streams (Sec-
tion 5).

4.1 Query Answering

We now explain how ECM-sketches support point queries,
inner product and self-join size queries, and derive proba-
bilistic guarantees for the estimation accuracy. Our analysis
covers both sliding window models, i.e., count-based and
time-based.

Point Queries. A point query (x, r) is a combination of an
item identifier x, and the query range r defined either as
number of time units or number of arrivals. Point queries
are executed as follows. The query item is hashed to the d
counters CM [j, h

j

(x)] where (j 2 {1 . . . d}), and the es-
timate of each counter E(j, h

j

(x), r) for the query range
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is computed. The estimate value for the frequency of x is
ˆf(x, r) = min

j=1...d

E(j, h
j

(x), r).
Let �

cm

and ✏
cm

denote the configuration parameters of
the Count-Min sketch, whereas ✏

sw

denotes the configura-
tion parameter of the exponential histogram. With ||a

r

||
1

we denote the number of arrivals within the query range.
The following theorem provides probabilistic guarantees for
the approximation quality for point queries and enables op-
timally setting ✏

cm

and ✏
sw

. As is typical for small-space
sketches, the error guarantees are relative to the stream char-
acteristics, i.e., the L1 norm.

Theorem 1 For any ✏ within (0, 1), an ECM-sketch con-
structed with ✏

cm

=

✏

1+✏

and ✏
sw

= ✏ satisfies Pr[| ˆf(x, r)�
f(x, r)|  ✏||a

r

||
1

] � 1 � �
cm

. Furthermore, the afore-
mentioned combination of ✏

cm

and ✏
sw

minimizes the space
complexity of the sketch.

Proof Special case of Theorem 3, with �
sw

= 0. ut

Inner Product and Self-Join Size Queries. Another fre-
quent query type is the cardinality of the inner product. Given
two streams a and b, the inner product is defined as a� b =P

x2D f
a

(x) ⇥ f
b

(x), where D denotes the input domain,
i.e., the distinct input elements, and f

a

(x) (resp. f
b

(x)) de-
notes the frequency of element x in stream a (resp. stream
b). Self-join size queries, also called the second frequency
moment F

2

, are a special case of inner product queries de-
fined over a single stream: F

2

(a) =

P
x2D (f

a

(x))2. Both
inner product and self-join size queries are very important
for databases, e.g., for building query execution plans, and
they can be efficiently and accurately estimated for streams
in both the cash register and turnstile model [29]. However,
similar to point queries, computing these queries over slid-
ing windows is challenging.

ECM-sketches can be used to address this type of queries
as well. Let a

r

(resp., b
r

) denote the substream of stream a
(resp., b) within the query range. With CM

a

we denote the
corresponding ECM-sketch for stream a

r

, and with E
a

(i, j, r)
we denote the estimated value of the counter of CM

a

in po-
sition (i, j), for query range r. Also, f

a

(x, r) and ˆf
a

(x, r)
denote the real and estimated frequency of x in stream a

r

.
The inner product of two streams a and b in a range

r is defined as a
r

� b
r

=

P
x2D f

a

(x, r)f
b

(x, r). Using
the ECM-sketches of a and b, we estimate it as follows:
\a
r

� b
r

= min

j

(

\a
r

� b
r

)

j

, where (

\a
r

� b
r

)

j

=

P
w

i=1

E
a

(i, j, r) ⇥ E
b

(i, j, r). The following theorem bounds the
approximation error.

Theorem 2 For any ✏ within (0, 1), two ECM-sketches con-
structed with ✏

cm

= ✏/(✏+1) and ✏
sw

=

p
✏+ 1�1 satisfy

Pr[| \a
r

� b
r

� a
r

� b
r

|  ✏||a
r

||
1

||b
r

||
1

] � 1 � �
cm

. Fur-
thermore, the aforementioned combination of ✏

cm

and ✏
sw

minimizes the space complexity of the sketches.

Proof In the appendix.

Time-based ECM-Sketches. Exponential histograms were
originally developed for count-based sliding windows (e.g.,
count the number of true bits in the last 100 arrivals), but
they can be extended for time-based sliding windows as well
(e.g., count the number of true bits arriving in the last 1000
sec.). Our solution can handle concurrent bit arrivals as well
as arrivals at arbitrary rates, and similar to the count-based
histograms, its memory footprint (the number of buckets)
scales logarithmically with the number of arrivals within the
sliding window. First, each entry in the data structure is iden-
tified using its arrival time, instead of using its position in
the stream. To reduce memory, arrival times are stored in
wraparound counters of O(lnN) bits, where N is the length
of the sliding window, e.g., in milliseconds. Second, entries
expire based on their arrival time, and not on their position in
the stream. Finally, we require an upper bound of the num-
ber of arrivals within the sliding window time range for each
stream S, denoted as u(N,S). Note that this is required only
for computing the maximum memory requirements of the
structure a priori; it does not have an impact on the actual
required memory or quality of ECM-sketches. Furthermore,
the bound can be very loose without a noticeable change on
the estimated space requirements, because space complexity
increases only logarithmically with u(N,S).

Complexity. We use N to denote the length of the sliding
window, either in number of arrivals or in time (depending
on the desired sliding window model), and u(N,S) as de-
fined earlier. Also, g(N,S) = max(u(N,S), N); function
g is used to enable unified cost expressions for both the time-
based and count-based sliding window model.

To get an ✏
sw

-approximation of the number of one-bits
in the sliding window, exponential histograms require
O(lnN + ln ln(u(N,S))) memory per bucket, to store the
bucket size and bucket boundaries. The number of buckets is
O(ln(u(N,S))/✏

sw

), yielding a total memory of
O(ln

2

(g(N,S))/✏
sw

). The update cost per element is
O(ln(u(N,S))) worst-case, and O(1) amortized time. Que-
ries covering the whole sliding window are executed in con-
stant time. For queries with range N 0 < N , the required
time is O(ln(u(N,S)/✏

sw

)). The extra time is required for
finding the oldest bucket overlapping with the query, as-
suming sequential access. If the storage model of the buck-
ets supports random access, e.g., a fixed-length array, then
this time can be further reduced to O(ln(ln(u(N,S)/✏

sw

)))

with binary search.
The space complexity of ECM-sketches is as follows.

For the Count-Min array, we require an array of width w =

de/✏
cm

e and depth d = dln(1/�)e. Each cell in the array
stores an exponential histogram, requiring
O(ln

2

(g(N,S))/✏
sw

) bits. Therefore, the total required mem-
ory is O(

1

✏sw✏cm
ln

2

(g(N,S)) ln(1/�)) =
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O(

1

✏

2 ln
2

(g(N,S)) ln(1/�)). Concerning time complexity,
adding an element requires computing d hash functions, and
updating d separate exponential histograms. The amortized
complexity for each arrival is therefore O(d) = O(ln(1/�)),
whereas the worst-case complexity is O(d ln(u(N,S))) =

O(ln(u(N,S)) ln(1/�)). Finally, query execution takes
O(ln(1/�)) time for a query of range N 0 equal to N . For
N 0 < N , the execution cost is O(d ln(u(N,S))/✏

sw

) 
O(ln(1/�) ln(u(N,S))/✏) with sequential access to buck-
ets, e.g., using a linked list. With random access support,
binary search can be used for finding the last relevant bucket
for each query, reducing the query cost to
O(ln(1/�) ln(ln(u(N,S))/✏)).

4.2 Alternative Algorithms for Sliding Windows

Sliding window counters can also be materialized using other
sliding window algorithms. In the literature, two such algo-
rithms are particularly well-known: (a) deterministic waves,
and, (b) randomized waves [21]. We now show how ECM-
sketches can incorporate these algorithms, and discuss the
positive and negative aspects of each variant.

Deterministic Waves. Deterministic waves [21] have iden-
tical memory requirements with exponential histograms, and
they outperform exponential histograms with respect to worst-
case complexity for updates, requiring always constant time.
As such, the space and computational complexity of ECM-
sketches based on deterministic waves is identical to that
of sketches based on exponential histograms, with the only
difference being the worst-case update complexity, which is
O(ln(1/�)).

A downside of deterministic waves is that they require
knowledge of the upper bound of the number of arrivals
u(N,S) during the initialization of the data structures, to de-
cide on the required number of queues/levels. Any overesti-
mation of u(N,S) is therefore translated to increased space
requirements – logarithmic with u(N,S). It is important to
note that this constraint is substantially less limiting com-
pared to the constraints of previous algorithms, e.g., [35],
which required an upper bound for the total number of items
in all streams, and therefore could not be applied to dynamic
networks with an unknown number of participating nodes
and streams.

Randomized Waves. Randomized waves [21] provide (✏, �)
approximation for the basic counting problem, i.e., Pr[|x̂�
x|  ✏

sw

x] � 1� �
sw

, where x̂ and x denote the estimated
and real number of true bits in the sliding window range re-
spectively. They have substantially higher space complexity
compared to their deterministic counterparts –
O(ln(1/�

sw

)/✏2
sw

) instead of O(1/✏
sw

). Nevertheless, they
are important for distributed applications as they enable com-
position without causing an inflation of the worst-case error

bounds; deterministic counterparts did not originally sup-
port any composition functionality. Therefore, we also con-
sider randomized waves for integration with our ECM-sketch
structures.

Theorem 3 For any ✏ within (0, 1), an ECM-sketch con-
structed with ✏

cm

=

✏

1+✏

, ✏
sw

= ✏, and �
sw

= �
cm

= �/2

satisfies Pr[| ˆf(x, r)�f(x, r)|  ✏||a
r

||
1

] � 1��
sw

��
cm

.
Furthermore, the aforementioned combination of ✏

cm

and
✏
sw

minimizes the space complexity of the sketch.

Proof In the appendix.

The space complexity of ECM-sketches based on ran-
domized waves is derived by multiplying the space com-
plexity of the two basic structures:
O
�
ln(1/�

cm

) ln(1/�
sw

) ln

2

(g(N,S))/(✏
cm

✏2
sw

)

�
=

O
�
ln

2

(�) ln2(g(N,S))/✏3
�
. Inserting a new element requires

O(ln(�
cm

) ln(�
sw

)) = O(ln

2

(�)) amortized time, and
O(ln(�

cm

) ln(�
sw

) ln(u(N,S))) = O(ln

2

(�) ln(u(N,S)))
worst-case time. Finally, query execution takes
O(ln(�

cm

) ln(�
sw

) (ln(u(N,S)) + 1/✏2
sw

)) =

O(ln

2

(�)(ln(u(N,S)) + 1/✏2)) with sequential access to
buckets and O(ln(�

cm

) ln(�
sw

) (ln ln(u(N,S))+ln(1/✏2
sw

)))

= O(ln

2

(�)(ln ln(u(N,S))+ln(1/✏2
sw

))) time with random
access.

Table 2 summarizes the main results for the combination
of ECM-sketches and the three sliding window structures.
The results correspond to both time-based and count-based
sliding windows.

5 Order-Preserving Merging

For many distributed applications, such as the network mon-
itoring application described in the introduction, we require
merging of individual ECM-sketches CM

1

, CM
2

, . . . , CM
n

,
each one corresponding to stream S

1

, S
2

, . . . , S
n

, to get
a single ECM-sketch CM� that corresponds to the logical
stream S� = S

1

� S
2

� . . . � S
n

. The � operator is de-
fined as a merging operator that preserves the ordering and
arrival time of the events. Standard Count-Min sketches al-
low merging, as long as all sketches are constructed with
identical dimensions and hash functions. For this, they rely
on the linearity of the Count-Min counters, which are simple
integers in the general case. However, this does not trivially
hold for ECM-sketches, where the counters are not simple
numbers but complex sliding window structures, since expo-
nential histograms (as well as all other deterministic sliding
window structures), do not support this kind of merging. Al-
though randomized structures enable lossless merging (cf.
Section 5.2), they come with a substantially higher space
complexity, and are thus not preferable for ECM-sketches.
Therefore, we first consider the order-preserving merging of
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Exponential Histogram Deterministic Wave Randomized Wave
Memory O

�
1
✏

2 ln(

1
�

) ln

2
(g(N,S))

�
O
�

1
✏

2 ln(

1
�

) ln

2
(g(N,S))

�
O
�

1
✏

3 ln

2
(�) ln2

(g(N,S))
�

Amort. update O(ln(1/�)) O(ln(1/�)) O(ln

2
(�))

Worst update O(ln(1/�) ln(u(N,S))) O(ln(1/�)) O(ln

2
(�) ln(u(N,S)))

Query O(ln(1/�) ln(u(N,S))/✏) O(ln(1/�) ln(u(N,S))/✏) O(ln

2
(�)(ln(u(N,S)) + 1/✏2))

Table 2 Computational and space complexity of ECM-sketches. Function g(N,S) is used as a shortcut for max(u(N,S), N).

deterministic sliding window structures. Note that this prob-
lem is interesting in itself, since these data structures are
widely used in the literature for maintaining statistics over
sliding windows. We then extend our results to cover merg-
ing of randomized waves, and of
ECM-sketches.

For completeness, before presenting the details of our
merging algrorithm, we note that other types of merging are
also possible. For example, Gibbons and Tirthapura [21],
have considered utilizing more than one randomized waves
for generating their position-wise union, i.e., for maintaining
count-based sliding window statistics. Their scenario and
query types are fundamentally different than ours.

5.1 Merging of Exponential Histograms

Consider a set of exponential histograms EH
1

, EH
2

, . . . ,
EH

n

, summarizing time-based sliding windows. All are con-
figured to cover a sliding window of N time units. The merg-
ing operation is denoted with �, i.e., EH� = EH

1

�EH
2

�
. . . � EH

n

. With EHj

i

we denote bucket j of EH
i

, and
|EHj

i

| denotes the bucket size (number of true bits). By
convention, buckets are numbered such that bucket 1 is the
most recent. The ending time of the bucket is denoted as
e(EHj

i

). To ease exposition, we use s(EHj

i

) to denote the
starting time of the bucket, even though this is not explicitly
stored in the buckets. By construction, the starting time of
a bucket is equal to the ending time of the previous bucket,
i.e., s(EHj

i

) = e(EHj�1

i

).
To construct EH� our methodology considers the indi-

vidual exponential histograms as logs. The basic idea is to
reconstruct EH� by assuming that half of the elements ar-
rive at the starting time of each bucket, and the remaining
at the ending time of the bucket. Precisely, let B denote the
list containing all buckets of all sliding windows. We initial-
ize an empty time-based exponential histogram with error ✏0,
configured to keep the last N time units, and a maximum ofP

n

i=1

|EH
i

| elements. For each bucket B[i] 2 B, we sim-
ulate the insertion in EH� of |B[i]| true bits. Half of the
bits are inserted with timestamp s(B[i]), and the other half
at time e(B[i]). Insertions are simulated in the order defined
by the starting and ending timestamps of the buckets.

Theorem 4 Consider n time-based exponential histograms
EH

1

, EH
2

, . . ., EH
n

, initialized with error parameter ✏,

and covering the same time range. The exponential histogram
EH� initialized with error parameter ✏0, and constructed
with the proposed merging algorithm answers any query
within its time range for the stream S� with a maximum
relative error of (✏+ ✏0 + ✏✏0).

We will now give the intuition of the proof. The formal
proof is presented in the appendix. Each exponential his-
togram EH of stream S configured with error parameter
✏ can be used to reconstruct an approximate stream S0, as
follows: For each bucket b in EH , add |b|/2 true bits in
time s(b), and |b|/2 true bits in time e(b). We argue that
answering any query with starting time s

q

within the range
of EH using the reconstructed stream S0 will result to a
maximum relative error ✏. Let b

j

be the bucket s.t. s(b
j

) <
s
q

 e(b
j

). Therefore, the accurate answer x of the query
for stream S is lower bounded by l =

P
j�1

i=1

|b
i

| + 1 and
upper bounded by h =

P
j�1

i=1

|b
i

| + |b
j

|. By construction,
the reconstructed stream will contain a total of

P
j�1

i=1

|b
i

|+
|b

j

|/2 items with timestamp greater than or equal to s
q

.
Therefore, answering the query by counting the number of
true bits in the reconstructed stream with timestamp after
s
q

will have a maximum error of max(h �
P

j�1

i=0

|b
i

| +
|b

j

|/2,
P

j�1

i=0

|b
i

| + |b
j

|/2 � l) = |b
j

|/2. By invariant 1 of
exponential histograms, |b

j

|/2  ✏(1 +

P
j�1

i=1

|b
i

|)  ✏x.
Therefore, the maximum difference between the answer es-
timated by stream S0 and the correct answer x will be less
than or equal to ✏x.

Our merging algorithm is equivalent to reconstructing
each stream S0

i

from exponential histogram EH
i

, and us-
ing these to recreate an exponential histogram EH�. The
reconstruction of stream S0 introduces a maximum relative
error ✏, as explained above. Summarizing S0 with a new ex-
ponential histogram we get an additional error ✏0. However,
✏0 is relative on the answer provided by stream S0, and not
by S. Therefore, the absolute error due to the exponential
histogram summarization will be ✏0x0, where x0 2 (1 ± ✏)x
and x denoting the accurate answer on S

i

. Summing both
errors, we get a total relative error of ✏+ ✏0 + ✏✏0.

For the special case when ✏0 = ✏, the maximum rela-
tive error becomes 2✏+ ✏2. Concerning space and computa-
tional complexity, EH� behaves as a standard exponential
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histogram, and therefore has the same complexity as pre-
sented in [16]. ut

Multi-level Merging. It is frequently desired to merge slid-
ing windows in more than one levels. For example, con-
sider a hierarchical P2P network, where each peer maintains
its own exponential histogram, and pushes it to its parent
for merging at regular intervals. Since the merged exponen-
tial histograms have the same properties as the individual
exponential histograms (albeit with a higher ✏), the above
analysis also supports iterative merging of exponential his-
tograms.

There are two types of approximation error that influ-
ence the estimation of a merged exponential histogram. A
possible approximation error, denoted as err

1

, is introduced
due to halving of the size of the last bucket of the merged
exponential histogram. This error occurs only at query time,
and is independent of the number of performed merges. There-
fore, at a multi-level merging scenario this error does not
need to be propagated at the intermediary exponential his-
tograms. A second type of error, termed as err

2

, occurs due
to the inclusion (exclusion) of data that arrived before (after)
the query starting time in buckets that are accounted (not ac-
counted) in the query result.

It turns out that the error err
2

is additive at the worst case
(in absolute value). For instance, in the lowest level (Level 0)
of the hierarchy, merging two exponential histograms (all
with relative error ✏), having a true number of bits (in a given
query range) equal to i

1

and i
2

, will result at a maximum
value for err

2

 ✏(i
1

+ i
2

). In Level 1, in addition to the
previous possible errors, ✏(i

1

+ i
2

)+ ✏(i
3

+ i
4

) stream items
may be incorrectly registered at the wrong side of the query
start time. A recursive repetition for h levels results to err

2


h✏i, where i =

P
j

i
j

. The total absolute error (including
err

1

) then becomes err = err
2

+ err
1

 h✏i + ✏(i + h✏i),
resulting to a maximum relative error of h✏(1 + ✏) + ✏.

In many applications, the number of merging levels can
be predicted, or even controlled when constructing the net-
work topology. For example, consider DHT-based or hier-
archical P2P topologies, which typically enable a balanced-
tree access to the peers of height h = log(N), where N is
the number of nodes. In such systems, initializing the indi-
vidual exponential histograms with error

p
1+2h+h

2
+4h✏�1�h

2h

yields a final merged exponential histogram of relative er-
ror ✏. Naturally, this causes a slight inflation of the size of
the sliding window, by O(log(N)). However, even with this
inflation, exponential histograms are – even for extremely
large networks – substantially smaller and more efficient
than randomized data structures that enable error-free merg-
ing in the expense of memory proportional to
O(ln(1/�)/✏2) (see also Section 5.2).

Deterministic Waves. The merging technique trivially ex-
tends for deterministic waves. Recall that each wave is com-

EH1 EH2

Bucket id 2 1 5 4 3 2 1
Size 1 1 8 4 2 1 1

Completion time 3 20 3 5 10 15 19
Arrivals 500 1000 900 950 980 990 1000

Fig. 2 An example why merging of count-based exponential his-
tograms is not possible.

posed of l levels, each covering a different range. To perform
the merging, we start from the lowest wave level l � 1, and
switch to a higher level every (1/✏ + 1)/2 bits, i.e., when
the first entry in the higher level has arrived before the next
entry in the current level. Repeating the calculation of the er-
ror bounds for the merging of deterministic waves becomes
straightforward when we notice that invariant 1 of the expo-
nential histograms is also true for deterministic waves.

Count-based Exponential Histograms. Although exponen-
tial histograms cover both time-based and count-based slid-
ing windows, merging of exponential histograms is specific
to time-based sliding windows. Count-based sliding win-
dows do not contain sufficient information for enabling order-
preserving merging. Even storing the system-wide time of
the buckets would not be sufficient to allow such a merging.
To illustrate this limitation, consider the two count-based
exponential histograms depicted in Fig. 2. For each bucket
we store the size of the bucket, the bucket completion time
and the total number of arrivals until that time. An arrival in
count-based sliding windows might be a true or a false bit.
An example query can then be: how many true bits arrived
in the last 100 system-wide arrivals. If these 100 system-
wide arrivals were read between time 19 and 20, then the
correct answer would be 1. However, it is also possible that
the last 100 system-wide arrivals have arrived between time
3 and time 20, in which case the correct answer could be
anything between 2 and 9. The information contained in the
two exponential histograms is not sufficient to estimate this
type of queries, as it only allows us to preserve the order
of the true bits, but looses the order of the false bits, which
is also important. Therefore, given only the exponential his-
tograms, it is not possible to merge them in a way that pre-
serves the ordering of both true and false bits. Deterministic
and randomized waves also have the same limitation when
it comes to order-preserving merging of count-based sliding
windows.

5.2 Merging of Randomized Waves

Randomized waves were proposed in [21] to address the
problem of distributed union counting: counting the num-
ber of 1’s in the position-wise union of t distributed data
streams, over a sliding window. Even though the algorithm
of [21] can utilize more than one waves constructed at dif-
ferent nodes to answer queries, it does not consider merging
of several waves to generate a single wave. Instead, it as-
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sumes that individual randomized waves can be stored and
accessed any time, which is inconvenient for large networks.
To eliminate this assumption, we now describe a slight vari-
ation of the initial algorithm that can produce a single ran-
domized wave out of a set of individual waves, with the same
probabilistic accuracy guarantees as the individual waves.

Our algorithm simulates the construction of the merged
randomized wave RW� by using only the information in-
cluded in the individual randomized waves. Consider a set
R of randomized waves RW

1

, RW
2

, . . . , RW
n

, configured
to store a sliding window of N time units, with error pa-
rameters ✏ and �. The merged randomized wave RW� is
initialized with the same ✏ and � parameters, for storing a
maximum of

P
n

i=1

|RW
i

| events over N time units. Each
level l of RW� is then constructed by concatenating the
corresponding level l from all individual randomized waves,
sorting all events based on the timestamp, and keeping the
last c/✏2 events. Recall that the number of levels of individ-
ual randomized waves is determined based on the maximum
number of events in the sliding window. Therefore, it may
happen that RW� has more levels than the individual ran-
domized waves. To populate the lower levels of RW�, we
rehash the events populating the last level of each individual
randomized wave, as proposed in [21] when merging differ-
ent levels from randomized waves.

The process of query execution and the accuracy guaran-
tees remain the same as for the standard randomized waves.

5.3 Merging of ECM-Sketches

Consider a set of ECM-sketches CM
1

, CM
2

, . . ., CM
n

with identical dimensions and hash functions. The ECM-
sketch CM� with each counter set to the sum of all corre-
sponding counters from the individual sketches (as defined
by the � operator), summarizes the information found in the
individual sketches:

CM�[j, k] = CM
1

[j, k]� CM
2

[j, k]� . . .� CM
n

[j, k]

To bound the estimation error, we consider the two sources
of error in the merged ECM-sketch. The error due to the
Count-Min sketch ✏

cm

does not change, since it only de-
pends on the dimensionality of the Count-Min array, which
is fixed. However, the error due to sliding window estima-
tions at each counter might change with each merging. Let
✏0
sw

denote the error produced by the merging of the corre-
sponding Count-Min counters, as discussed in Sections 5.1
and 5.2. If ✏

sw

and ✏
cm

are configured according to Theo-
rem 3, it can be easily shown that ✏0

sw

will always be greater
than or equal to ✏

cm

/(1� ✏
cm

). Then, the error bounds fol-
low directly by Lemma 3: | ˆf(x, r) � f(x, r)|  ✏0

sw

||a
r

||
1

with probability 1� �
cm

.

6 Continuous Function Monitoring with ECM-Sketches

A substantial number of distributed applications requires con-
tinuous monitoring of complex functions defined over high-
dimensional domains. For example, network administrators
frequently require to monitor the (sliding-window) heavy-
hitter IP addresses over distributed streams of network pack-
ets (e.g., received by the edge routers of the corporate net-
work), as these IPs are potentially launching a DoS attack.
ECM-sketches can be exploited in these applications, such
that each network node can compactly and efficiently main-
tain its local state, as well as effectively propagate it over
the network. In this section, we show how ECM-sketches
can leverage the geometric method [33,27], to enable con-
tinuous function monitoring.

We illustrate our technique by addressing two frequent
requirements of distributed applications: (a) monitoring items
with frequency over a user-defined threshold ⌧ , and, (b) mon-
itoring self-join size queries. In principle, any query type
that can be answered by (a sequence of) point queries can be
monitored in the lines of the algorithm that we will present
for query (a). Some examples include hierarchical heavy
hitters, quantiles, range queries, and maximum frequency
queries (see also [11,31] for a more detailed discussion on
how centralized Count-min sketches and ECM-sketches can
address these problems using point queries). It is also straight-
forward to extend the algorithm for query (b) for inner-pro-
duct size queries.

Section 6.1 provides an introduction to the geometric
method. In Section 6.2 we introduce the integration of ECM-
sketches with the geometric method, and discuss the main
challenges that need to be addressed. Then, in Section 6.3,
we briefly discuss an algorithm for query (a). This discus-
sion serves mainly as a first, simple, example for the inte-
gration. An algorithm for query (b) is presented in more de-
tail in Sections 6.4 and 6.5. Our discussion for query (b) in-
cludes an efficient monitoring algorithm and novel theoret-
ical results to enable dimensionality reduction of the moni-
toring problem (from d⇥w to d), which translates to drastic
network savings and better scalability.

6.1 An Introduction to the Geometric Method

Sharfman et al. [33] consider the basic problem of monitor-
ing distributed threshold-crossing queries; that is, monitor-
ing whether f(v) < ⌧ or f(v) > ⌧ for a possibly com-
plex, non-linear function f and a high-dimensional vector v
computed as the aggregate of the corresponding local/partial
vectors {v(p

1

),v(p
2

), . . . ,v(p
n

)} at a set of n sites. The
key idea of the method is, since it is generally impossible
to connect the values of f on the local statistics vectors to
the global value f(v), one can employ geometric arguments
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to monitor the domain (rather than the range) of the moni-
tored function f . The monitoring protocol works as follows.
Assume that at any point in time, each site p

i

has informed
the coordinator of some prior state of its local vector v0

(p
i

);
thus, the coordinator has an estimated global vector e =

1

N

P
N

i=1

v0
(p

i

). Clearly, the updates arriving at sites can
cause the local vectors v(p

i

) to drift too far from their previ-
ously reported values v0

(p
i

), possibly leading to a violation
of the threshold ⌧ . Let �v(p

i

) = v(p
i

)� v0
(p

i

) denote the
local delta vector (due to updates) at site i, and let u(p

i

) =

e+�v(p
i

) be the drift vector from the previously reported
estimate at site p

i

. We can then express the current global
statistics vector v in terms of the drift vectors:

v =

1

N

NX

i=1

(v

0
(p

i

)+�v(p
i

)) = e+

1

N

NX

i=1

�v(p
i

) =

1

N

NX

i=1

u(p
i

).

That is, the current global vector is a convex combination of
drift vectors and, thus, guaranteed to lie somewhere within
the convex hull of the delta vectors around e. Fig. 3 de-
picts an example in d = 2 dimensions. The current value of
the global statistics vector lies somewhere within the shaded
convex-hull region; thus, as long as the convex hull does not
overlap the inadmissible region (i.e., the region {v 2 R2

:

f(v) > ⌧} in Fig. 3) we can guarantee that the threshold
has not been violated (i.e., f(v)  ⌧ ).

The problem, of course, is that the �v(p
i

)’s are spread
across the sites and, thus, the above condition cannot be
checked locally. To transform the global condition into a lo-
cal constraint, we place a d-dimensional bounding ball B(e,
�v(p

i

)) around each local delta vector, of radius 1

2

k�v(p
i

)k
and centered at e +

1

2

�v(p
i

) (see Fig. 3). It can be shown
that the union of these balls completely covers the convex
hull of the drift vectors [33]. This observation effectively re-
duces the problem of monitoring the global statistics vector
to the local problem of each remote site monitoring the ball
around its local delta vector.

More specifically, given the monitored function f and
threshold ⌧ , we can partition the d-dimensional space to two
regions V = {v : f(v) > ⌧} and V = {v : f(v)  ⌧}.
(Note that each of these can be arbitrarily complex, e.g.,
they may comprise multiple disjoint regions of Rd.) The
basic protocol is now quite simple: Each site monitors its
delta vector �v(p

i

) and, with each update, checks whether
its bounding ball B(e, �v(p

i

)) is monochromatic, i.e., all
points in the ball lie within the same region (either V , or V ).
If this is not the case, we have a local threshold violation,
and the site communicates its local �v(p

i

) to the coordina-
tor. The coordinator then initiates a synchronization process
that typically tries to resolve the local violation by commu-
nicating with only a subset of the sites in order to “balance
out” the violating �v(p

i

) and ensure the monochromicity of
all local bounding balls [33]. Briefly, this process involves
collecting the current delta vectors from (a subset of) the
sites, and recomputing the minimum and maximum values

of f(v) according to the new, partial, average. If both val-
ues reside at the same side of the threshold, the coordinator
computes a slack vector for each site in the synchronization
set that shifts the local vector to the partial average. In the
worst case, the delta vectors from all N sites are collected,
leading to an accurate estimate of the current global statis-
tics vector, which is by definition monochromatic (since all
bounding balls have 0 radius).

In more recent work, Sharfman et al. [27] show that the
local bounding balls defined by the geometric method are
actually special cases of a more general theory of Safe Zones
(SZs), which can be broadly defined as convex subsets of
the admissible region of a threshold-crossing query. Then,
as long as the local drift vectors stay within such a SZ, the
global vector is guaranteed (by convexity) to be within the
admissible region of the query.

6.2 ECM-Sketches and the Geometric Method

We are interested in domains where the local and global
statistics vectors (v(p

i

) and v respectively) are defined over
a user-chosen sliding window range, and are expected to
be high-dimensional, e.g., they may contain the frequency
of each item within the user-defined sliding window, for
a large number of items. Clearly, accurate maintenance of
these statistics for high-velocity data streams is computa-
tionally challenging. Furthermore, the aggregation of the lo-
cal statistics vectors in order to compute the global statis-
tics vector is costly, since it requires exchanging large vec-
tors during synchronization. Both computational and net-
work cost can be substantially reduced with a small trade-off
on quality, by using ECM-sketches. This requires the fol-
lowing modifications in the geometric method: a) sites use
ECM-sketches to approximate their local statistics vectors,
b) the global statistics/estimate vector, the local delta vec-
tors and the drift vectors, are all represented as Count-min
sketches, extracted by the ECM-sketches (at query time),
and finally, c) during configuration of the geometric method,
the query is described on top of the sketch representations of
the local and global statistics vector.

Clearly, a naive implementation of the above changes
would be subject to substantial constraints, since the size of
the domain space of geometric monitoring would be equal
to the dimensionality of the ECM-sketches (d ⇥ w), and
the geometric method is known to be inefficient in high-
dimensional domains. It is therefore imperative to reduce the
dimensionality of the problems to monitor. In the following
sections we show how this is achieved for the frequent items
query and for the self-join size queries.

Before going into further details, notice that the above
method enables concurrent monitoring of multiple queries
(not necessarily of the same type) with a single ECM-sketch
per node, which satisfies the strictest accuracy requirements
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of all queries and covers the largest window. Multiple in-
stances of the geometric method (in the simple case, one
per query), could then be executed in parallel, coordinat-
ing the synchronization process to reduce network cost. The
network cost for monitoring the queries is determined by
the network requirements of the geometric method, i.e., it
depends mainly on the stability of the answer and the ac-
ceptable error parameter ✓. Fully analyzing all query types,
examining the involved challenges, and exploiting the paral-
lel execution of the queries for network and computational
benefits is an interesting open problem, and part of our fu-
ture work.

6.3 Monitoring Frequent Items

Let p
1

, p
2

, . . . , p
n

denote all n network nodes, S
1

, S
2

, . . . ,
S
n

their corresponding streams, and S
0

the order-preserving
union of these streams. We use D to denote the domain of
S
0

, i.e., all distinct items appearing in the stream, and S
i,r

the sub-stream of S
i

within query range r. The algorithm
addresses the problem of distributed continuous monitoring
of the set Fr

⌧

of items with frequency in S
0,r

greater than a
user-chosen threshold ⌧ . It works by decomposing the prob-
lem to a set of smaller individual problems, one for each
distinct item occurring in the stream, yet without requiring
the knowledge of all distinct items a priori.

The user first selects the frequency threshold ⌧ , the de-
sired accuracy of ECM-sketches (� and ✏), and an acceptable
error parameter ✓ � 0 that defines the error tolerance of the
geometric method algorithm, i.e., it is acceptable for the al-
gorithm to misclassify items with frequency in the range of
⌧(1 ± ✓). At initialization time t

0

, each site p
i

constructs
an empty ECM-sketch ECM

i

to be used as its local statis-
tics vector, and an empty Count-min sketch CM(t

0

) to be
used as the reference vector (we drop the site id from the
notation since the reference vector is always identical at all
sites). Both sketches are of the same size d⇥w, and are ini-

tialized with identical hash functions at all sites. After ini-
tialization, sites enter the monitoring phase: For each item
x 2 D, we define a d-dimensional threshold-crossing query
as the boolean condition:

Q(f ,v, x, ⌧, ✓) ⌘
(
f(v(t, x)) � ⌧(1� ✓) if f(v(t

0

, x)) < ⌧

f(v(t, x)) < ⌧(1 + ✓) if f(v(t
0

, x)) � ⌧

with function vector f : Rd ! R defined as f(v) = n ⇥
min

d

j=1

v[j]. The d-dimensional vectors v(t, x) and v(t
0

, x)
are extracted by ECM

i

and CM respectively, as follows.
v(t)[j] = E

i

(j, h
j

(x), r) (the estimation from the counter
of ECM

i

at position (j, h
j

(x))) and v(t
0

)[j] = CM [j, h
j

(x)]
(the value of the counter of the reference Count-min sketch
at position (j, h

j

(x))).
Using the geometric method, sites monitor the threshold-

crossing queries in order to detect item arrivals or expira-
tions that potentially invalidate the set of estimated frequent
items ˆFr

⌧

. An arrival of any item x is handled as follows.
First, the local ECM-sketch is updated to include the arrival.
If x is already frequent, nothing else needs to be done. In the
opposite case, the site probes the corresponding threshold
query Q(f ,v, x, ⌧, ✓), initiating a synchronization if thresh-
old crossing occurs. Notice that, for synchronization, the
coordinator needs to collect only the values of the ECM-
sketch counters corresponding to x, i.e., E(j, h

j

(x), r) for
j = 1 . . . d, in order to update the reference Count-min
sketch and decide whether the item causing the violation is
frequent. The actual sliding window structures do not need
to be exchanged.

Counter updates due to expirations are slightly more com-
plicated (these could cause the removal of a frequent item
from ˆFr

⌧

). The technical challenge comes from the fact that a
bucket expiration at the sliding window of any counter from
the ECM-sketch may affect many items, introducing com-
putational complexity. One approach would be to have each
site execute the threshold crossing queries for all frequent
items at regular intervals. To reduce computational complex-
ity, each site p

i

instead maintains a balanced binary search
tree that contains all counters of ECM

i

and the set of fre-
quent items corresponding to each counter, ordered by the
expiration time of their oldest bucket. This tree enables p

i

to
quickly detect (in constant time) whether any of the counters
of ECM

i

contains expired buckets, and test only the rele-
vant threshold-crossing queries. The quality guarantees and
memory footprint of the above algorithm are summarized by
the following lemma.

Lemma 1 The algorithm guarantees that with probability
greater than or equal to 1 � �, any item x contained in ˆFr

⌧

has a real frequency in S
0,r

greater than (1�✓)⌧�✏||S
0,r

||
1

,
whereas any item x not contained in ˆFr

⌧

has a real frequency
less than (1+✓)⌧ + ✏||S

0,r

||
1

. The algorithm requires mem-
ory of O(

1

✏

2 ln(
1

�

) ln

2

(||r||
1

) + | ˆFr

⌧

|).
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6.4 Monitoring Self-Join Size Queries

In the previous case, the problem to be monitored was al-
ways d-dimensional, with a small d (d  5 for � � 0.01).
As such, the geometric method was able to bound the con-
vex hull using relatively small balls, effectively filtering out
local updates. Furthermore, threshold violations could be re-
solved by exchanging only d counters. Estimation of the
self-join size, however, involves all d ⇥ w counters, with
(d⇥w) typically in the hundreds. A naive application of the
geometric method for self-join size monitoring would there-
fore require exchanging d ⇥ w counters at each threshold
violation. The problem is further aggravated by the high di-
mensionality of the bounding balls (equal to the number of
counters), which increases the frequency of threshold cross-
ings.

Our attack to this problem is twofold. First, we adapt a
recently-proposed insight [18] that enables us to reduce the
problem to d dimensions, by monitoring upper and lower
bounds of the self-join size estimate instead. This adapta-
tion includes repeating the analysis of [18] for the ECM-
sketch (monitoring the min instead of the median, and pro-
viding error guarantees relevant to the stream length). How-
ever, the bounds offered by this method alone turn up to be
quite loose when it comes to ECM-sketches, causing fre-
quent threshold crossings. Therefore, we offer a new, sec-
ond, approach that further tightens these bounds by exploit-
ing the sliding-window property of ECM-sketches. Com-
pared to the first approach, the second approach drastically
reduces the number of threshold crossing, enabling substan-
tial network gains.

We initiate the discussion with some basic notation. Let
r denote the query range, and v

i

(t) the Count-min sketch
extracted by the ECM-sketch of node p

i

, with each counter
computed as v

i

(t)[row, col] = E
i

(row, col, r).1 Also, v(t) =
1

n

P
n

i=1

v
i

(t) (the average of v
i

(t)). Function f(v) corre-
sponds to the self-join size estimate function with Count-
min sketches, i.e., f(v) = min

d

row=1

P
w

col=1

(v[row, col])2.
Finally, d

i

is the d-dimensional vector computed as d
i

[row] =
||v

i

(t)[row]� v
i

(t
0

)[row]||, and d =

1

n

P
n

i=1

d
i

. The fol-
lowing lemma enables us to extract d-dimensional threshold-
crossing queries:

Lemma 2 If min

d

row=1

{ ||v(t0)[row]||
n

� d[row]} �
1

n

q
f(v(t0))

1+✓

and min

d

row=1

{ ||v(t0)[row]||
n

+ d[row]} 
1

n

q
f(v(t0))

1�✓

, then f(v(t
0

)) 2 (1± ✓)f(v(t)).

Proof In the appendix.

1 The geometric method is trivially extended to handle matrices in-
stead of vectors by applying vectorization on the matrices, and adjust-
ing the monitored function to use the corresponding vector dimensions.
We use the matrix notation for the sketches only for convenience.

Since d is a convex combination (the average) of the
distributed values d

j

, we can already exploit the geometric
method to monitor the self-join size estimate. This can be
achieved by defining two queries, the first (Q

u

) for upper-
bounding min

d

i=1

{||v(t
0

)[i]||�nd[i]}, and the second (Q
l

)
for lower-bounding min

d

i=1

{||v(t
0

)[i]||+nd[i]}. A key ob-
servation, however, is that the definition of d does not ac-
count for the direction of each update: any update of a counter
on a local ECM-sketch that shifts a counter away from its
last synchronized value (either decreasing the counter value
due to an expiration of a bucket, or increasing the value due
to a new arrival) will lead to an increase of d. This, however,
results in unnecessary threshold crossings. For example, an
increase of a counter at a peer p

j

may lead to a threshold
crossing on the lower-bound threshold query, even though
in practice an increase of the counter can only lead to an
increase of the self-join size.

To circumvent this problem we introduce two auxiliary
matrices per peer, one for the upper bound that includes only
the counter shifts which increase the counters’ values since
last synchronization, and another with the shifts that de-
crease the counters’ values. Formally, for the upper bound,
vu

i

(t) is computed as: vu

i

(t)[row, col] = max(v
i

(t),v
i

(t
0

)),
and for the lower bound vl

i

(t)[row, col] = min(v
i

(t),v
i

(t
0

)).
Similarly, du

i

= ||vu

i

(t)[row] � v(t
0

)[row]|| and
dl

i

= ||vl

i

(t)[row] � v(t
0

)[row]||. du and dl are the cor-
responding averages over all nodes. Then, we can show the
following:

Theorem 5 If min

d

row=1

{ ||v(t0)[row]||
n

� dl

[row]} �
1

n

q
f(v(t0))

1+✓

and min

d

row=1

{ ||v(t0)[row]||
n

+ du

[row]} 
1

n

q
f(v(t0))

1�✓

, then f(v(t
0

)) 2 (1± ✓)f(v(t)).

Proof In the appendix.

This leads to the following threshold crossing queries
(the queries become true when threshold violation occurs):

Q
u

(f ,du,v, ✓) ⌘
d

min

row=1

{du

[row] +
||v(t

0

)[row]||
n

} >
1

n

r
f(v(t

0

))

1� ✓

and for the lower bound:

Q
l

(f ,dl,v, ✓) ⌘
d

min

row=1

{ ||v(t0)[row]||
n

� dl

[row]} <
1

n

r
f(v(t

0

))

1 + ✓

Synchronization. A two-phase synchronization algorithm
is used to handle threshold violations. Without loss of gen-
erality we will demonstrate the algorithm assuming a thresh-
old violation in Q

u

(the case of Q
l

is analogous). In a first
phase, all nodes p

i

send their local values of du

i

to the coor-
dinator in order to compute the accurate average value du.
If the updated du no longer causes threshold violation, it is
sent back to all nodes to be used in the monitoring algo-
rithm. However, if this first phase is not sufficient to address
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the threshold violation, the coordinator collects also the lo-
cal values of v

i

(t), recomputes the average value v(t) and
the updated self-join size, and reinitializes the monitoring al-
gorithm with the updated values. Both phases can be further
extended such that synchronization stops as soon as balanc-
ing between the retrieved vectors is possible, as explained
in Section 6.1. The first phase has a network cost (in trans-
fer volume) of O(d⇥ n) = O(n ln(1/�)), whereas the cost
of the (more infrequent) second phase is O(d ⇥ w ⇥ n) =

O(n ln(1/�)/✏).

6.5 Efficient Monitoring of the Minimum

The previous discussion has abstracted away the details of
the geometric monitoring of functions containing the mini-
mum. In principle, the standard geometric monitoring algo-
rithm can be used, as described above. However, the nature
of the monitored function enables substantial optimizations.
We distinguish two types of queries: (a) the queries where
the last estimate vector is located above the threshold, and
(b) the queries where the last estimate vector is below the
threshold.

For the first type of queries, we will use as a running
example the query Q

l

, introduced in Section 6.4 (the same
principles apply to the queries introduced in Section 6.3 that
correspond to frequent items). The admissible region of the
monitored vector in this query is already convex (i.e., in two
dimensions, this will be the L-shaped area above the thresh-
old). Hence, the monochromicity test becomes fairly simple:
a node p

i

reading an update only needs to test whether the
local value of dl

i

stays within the convex admissible region,
in which case the update is guaranteed to be safe.

Query Q
u

, and the queries from Section 6.3 correspond-
ing to infrequent items belong to the second type of queries.
For these queries, the admissible region is non-convex. How-
ever, the inadmissible region is now convex, and we can ap-
ply a different technique based on convex safe zones [27]: In
the absense of statistics for the velocity and direction of du,
we choose the safe zone such that it maximizes the slack in
all dimensions, as follows. First, we find the point p of the
inadmissible region that is closest to v(t0)

n

. It is easy to show

that this point is p[i] = max

⇣
v(t0)
n

, 1

n

q
f(v(t0))

1�✓

◆
. Then,

we find the hyperplane H passing from p that is perpendic-
ular to vector (p � v(t0)

n

) (see Fig. 4 for a two-dimensional
illustration of this process). Hyperplane H divides the d-
dimensional space to two convex subspaces. By construc-
tion, the one of the two subspaces (in the two-dimensional
example, the subspace in the right of H , denoted with R)
contains the inadmissible region and possibly some admissi-
ble area, whereas the second subspace (denoted with L) con-
tains only admissible area w.r.t. query Q

u

. Since L is con-
vex, it can be used as a safe zone for the geometric method.

inadmissible
region

R 
subspace

L 
subspace

H

n
tv )( 0

 

p
 

Fig. 4 Monitoring of the minimum for Q
u

with safe-zones. The in-
admissible region is fully covered by the R subspace (yellow). The L
subspace (green) can be used as a safe zone for v(t0)/n+ du.

In particular, after each update, nodes only need to check
whether v(t

0

)/n + du is still within L. This is guaranteed
to be the case whenever v(t

0

)/n+ du

i

remains within L for
all nodes i. The computational complexity for this process is
only O(d) = O(ln(1/�)) for computing the hyperplane and
checking whether du

i

is still in the safe zone.

7 Experimental Evaluation

Our experiments focused on evaluating ECM-sketches with
respect to their scalability, effectiveness, and efficiency, as
well as their suitability for distributed setups. The experi-
ments were conducted using two large real-life data sets, the
world-cup’98 [2] (wc98) and the CAIDA Anonymized Inter-
net Traces 2011 data set (caida2). The wc98 data set consists
of all HTTP requests that were directed within a period of 92
days to the web-servers hosting the official world-cup 1998
website. It contains a total of 1.089 billion valid requests,
served by 33 server mirrors. Each request was indexed us-
ing the web-page url as a key, i.e., the ECM-sketch could
be used for estimating the popularity of each web-page. The
caida data set consists of Internet traces collected by passive
monitors installed in Chicago and San Jose. For this exper-
iment we have used the subset of data collected from the
Chicago monitors in 17th February 2011, which contained a
total of 345 Million IPv4 packets. Each packet was indexed
using the source’s IP address. Therefore, the ECM-sketch
enabled estimating the number of packets sent by each IP
address.

We compared three sketch variants, differentiating on
the employed sliding window algorithm: (a) the default vari-
ant described earlier which is based on exponential histograms,
denoted as ECM-EH, (b) a variant using deterministic waves
(ECM-DW), and, (c) a variant based on randomized waves
(ECM-RW). Comparison between the variants was performed
to examine the influence of the sliding window algorithm
to the performance of ECM-sketches, in both centralized

2 Available from http://www.caida.org/data/
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ECM-EH ECM-DW ECM-RW
wc98
Update rate 4343095 6067130 70468
Query rate 1641935 1850909 11905
caida
Update rate 5344982 6205999 72778
Query rate 2377502 3827267 15108

Table 3 Indicative update and query rates (per sec-
ond) for the centralized setup

Point queries ECM-EH Self join ECM-EH ECM-RW
✏ Data set Centr.:Distr. Inc.rate Centr.:Distr. Inc.rate Centr.:Distr.
0.1 wc98 0.018:0.020 1.114 0.018:0.019 1.053 0.017:0.017
0.2 wc98 0.034:0.040 1.181 0.034:0.037 1.092 0.031:0.031
0.1 caida 0.020:0.021 1.043 0.020:0.020 1.018 0.018:0.018
0.2 caida 0.038:0.041 1.079 0.037:0.039 1.042 0.034:0.034

Table 4 Observed errors and error increase rate – inflation is due to the iterative merg-
ing.

and distributed environments. Comparison with ECM-RW
was of particular interest, since randomized algorithms for
sliding window maintenance (such as the randomized waves
employed by ECM-RW) were the only ones supporting merg-
ing prior to this work. Therefore, examining the performance
of ECM-RW experimentally also serves the purpose of ex-
amining the importance of the merging mechanism for de-
terministic sliding window algorithms, proposed in this work.

7.1 Implementation Details

ECM-sketches were implemented in Java 1.7 using 32-bit
addressing. The timing experiments were executed on a sin-
gle idle core of an Intel Xeon E5-2450, clocked at 2.1 GHz.
For the wc98 data set, deterministic and randomized waves
were initialized with an upper bound of 1000 events per
second, whereas for the caida dataset we have used an up-
per bound of 1000 events per millisecond. In practice, it is
rarely possible to predict the maximum number of events per
sliding window, and therefore such estimates (typically de-
cided by analyzing a small stream sample) are often the only
option. Exponential histograms did not require such knowl-
edge at initialization time.

Particularly for randomized waves, Gibbons and Tirtha-
pura [21,20] explain that a correctness probability of 1��

sw

requires the parallel maintenance of c ln
2

(1/�
sw

) indepen-
dent instances of the data structure, where the constant c =

36 is determined by worst-case analysis. This number of rep-
etitions, in combination to the space complexity of each in-
stance (c/✏2

sw

), can make the exchange of randomized waves
over a distributed network extremely inefficient – hence the
importance of the ability to merge deterministic data struc-
tures that is proposed in this article. Notice however that,
as suggested in [20], smaller constants may also be used
in practice in order to reduce the space and computational
complexity. This, of course, comes at the cost of meaning-
less worst-case guarantees. In the following experiments, we
set c =

p
36 = 6, which reduces the cost by a factor of 36,

but still offers an empirical estimation accuracy that is com-
parable to the one of deterministic sliding window structures
configured with the same ✏.

Unless otherwise mentioned, ECM-sketches were set to
monitor a sliding window of 2 million time units. For wc98,

this corresponded to 2 million seconds, i.e., 23 days, whereas
for caida, it corresponded to 2 million microseconds, i.e.,
33 minutes. Queries smaller than the sliding window were
executed as well, using the same ECM-sketches. In partic-
ular, queries were generated with an exponentially increas-
ing range, i.e., query q

i

covered the range [t � 10

i, t], with
t denoting the time of the last arrival. For each range, a
self-join size query, as well as a set of point queries were
constructed and executed. For thorough evaluation, we con-
structed one point query for each distinct item in the query
range (i.e., estimating the popularity of each web-page in
the wc98 dataset, or the number of packets sent by each IP
address in the caida dataset).

7.2 Centralized Setup

In the centralized scenario, a single site monitors the whole
stream and maintains an ECM-sketch, which is subsequently
used for answering the queries. We first consider the trade-
off between memory requirements and estimation error. For
this, we vary ✏ within the range of [0.05, 0.3], keeping � =

0.15. For each ✏ value, we use the analysis presented in Sec-
tion 4 for point and self-join size queries to configure the
ECM-sketch, such that the required memory for the targeted
query type is minimized.

Figures 5(a)-(d) plot the average and maximum observed
error in correlation to the required memory for the two data
sets. The plots are annotated with indicative ✏ values. The
displayed error at the Y axis is relative to the number of
events arriving within the query range, i.e., for point queries,
err = | ˆf(x, r) � f(x, r)|/||a

r

||
1

and for self-joins, err =

| \a
r

� a
r

� a
r

� a
r

|/(||a
r

||
1

)

2. Recall that ECM-RW does
not allow probabilistic guarantees for self-join size queries,
and is therefore not considered for this type of queries. Ta-
ble 3 presents indicative update and point query rates for the
considered sketches.

We first observe that both the average and maximum ob-
served errors are lower than the user-selected value ✏ for all
ECM-sketch variants. However, the memory requirements
of ECM-RW are typically two to three orders of magnitude
higher than the requirements of ECM-sketches based on the
two deterministic structures configured with the same ✏. As
an example, for the wc98 experiment with a moderate value
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Point queries: EH         DW         RW         Self-join size queries: EH             DW

Fig. 5 Average and maximum observed error in correlation to memory requirements for a centralized setup: (a)-(b) wc98 data set, (c)-(d) caida
data set. The points correspond to ✏ 2 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

of ✏ = 0.15, the cost of maintaining the ECM-RW sketch
is 48.8 Mbytes, whereas ECM-sketches based on exponen-
tial histograms and deterministic waves require 22 Kbytes
and 50 Kbytes respectively. This happens because the mem-
ory requirements of randomized waves grow quadratically
with 1/✏, whereas the two deterministic sliding window al-
gorithms scale linearly. Note that this negative result ap-
plies to all known randomized sliding window algorithms,
e.g., [35,14], since they all scale quadratically with 1/✏. As
such, ECM-sketches based on deterministic structures are
more applicable for scenarios with hardware with less mem-
ory, like sensor networks and network devices. Also note
that ECM-RW are substantially slower than ECM-EH and
ECM-DW, supporting two orders of magnitude lower up-
date and query rates (cf. Table 3).

Focusing on the two structures with deterministic sliding
windows, we see that ECM-EH sketches are substantially
more compact, requiring around one third of the space of
ECM-DW for the same ✏ value. Concerning computational

performance, both structures can support comparable update
and query execution rates (ECM-DW is slightly faster than
ECM-EH, mainly due to its O(d) worst-case complexity per
update, compared to O(d logN) for ECM-EH). The results
are consistent for both data sets.

Summarizing, these first results demonstrate the supe-
riority of ECM-EH and ECM-DW compared to ECM-RW,
both in terms of compactness and computational performance.
ECM-EH and ECM-DW have comparable computational per-
formance, whereas in terms of compactness ECM-EH sub-
stantially outperforms ECM-DW.

7.3 Distributed Setup

The second series of experiments was designed to evalu-
ate the suitability of ECM-sketches for distributed setups,
and precisely: (a) for setups requiring one-time merging of
ECM-sketches, possibly even in a hierarchical fashion, and
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Fig. 6 Observed error in correlation to the network cost, for varying ✏: (a) wc98 data set, (b) caida data set.

(b) for setups requiring continuous monitoring of functions
through distributed ECM-sketches.

7.3.1 One-time Merging

These experiments focused on studying the influence of the
network size and ✏ on the network cost. We have simulated a
fixed network of n 2 [2, 256] sites, organized in an architec-
ture resembling a balanced binary tree of height dlog

2

(n)e.
All sites resided at the leaf nodes of the tree, and were as-
signed the task of summarizing disjoint streams with ECM-
sketches. Some of the sites were also randomly placed at
the internal tree nodes, and were responsible for merging
the sketches coming from their children. After completion
of the streams, the sites pushed the resulting ECM-sketches
to the root through the hierarchy, with merging at each in-
termediary node. At the end of this process, the root node of
the hierarchy was holding a single ECM-sketch that repre-
sented the order-preserving merging of the n streams. ECM-
DW sketches are not considered in this set of experiments,
since they do not offer advantages compared to ECM-EH
sketches with respect to compactness or accuracy.

Figures 6(a)-(b) plot the average observed error for point
and self-join size queries in correlation to the network re-
quirements for the whole merging process to be completed.
The results correspond to a fixed network of 16 sites, with
✏ 2 [0.05, 0.3] and � = 0.15. (Note that the simulation
with ECM-RW sketches did not complete for ✏ = 0.05 val-
ues, due to insufficient memory resources at the machine
simulating the sites.) To illustrate the accuracy loss due to
this merging, Table 4 presents a comparison between the
observed error of the centralized and the distributed ECM-
sketches.

As expected, the process of iterative mergings causes an
inflation of the observed error for ECM-EH sketches. This

inflation, however, is very small, and substantially lower than
the theoretical worst-case bound derived by the analysis. For
example, for the wc98 dataset with ✏ = 0.1, the average
observed error after all mergings is 0.020, whereas the cen-
tralized ECM-EH has an observed error of 0.018, i.e., the
error inflation caused by the iterative ECM-EH mergings
is less than 1/8 of the experimentally derived error of the
centralized sketch. Concerning ECM-RW sketches, there is
no systemic variation of the error, since randomized waves
enable lossless merging at the expense of a larger memory
footprint. However, the network required for performing this
merging using ECM-RW is at least three orders of magni-
tude higher. This requirement is prohibitive for a large set
of application scenarios, like sensor and mobile networks,
where high network usage causes severe battery drainage.

To explore the influence of the network size on the esti-
mation accuracy and network cost, we have also simulated
networks of n sites, with n = {2, 4, . . . , 256}. (For the case
of ECM-RW, the number of sites reached only up to 64 due
to memory constraints at the machine executing the simu-
lation.) The sites were again placed as leaf nodes on a bal-
anced binary tree, and updates were assigned to the sites ran-
domly, with equal probability. Figures 7(a) and (c) plot the
average observed error in correlation to the network size, for
✏ = � = 0.15. As expected, for ECM-EH sketches, increas-
ing the number of sites leads to a small increase on the ob-
served estimation error, whereas the accuracy of ECM-RW
sketches remains unaffected. However, similar to the previ-
ous experiment, the network cost for merging the sketches
based on randomized waves (Figures 7(b) and (d)) is three
orders of magnitude higher compared to ECM-EH. This lim-
its the applicability of ECM-RW to cases where fast, fixed
network is available, and makes the ability to merge de-
terministic sliding windows, e.g., based on exponential his-
tograms, a very important contribution of this work.
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Fig. 7 Observed error and network cost for different network sizes: (a)-(b) wc98, (c)-(d) caida.

Summarizing, this set of experiments showed that ECM-
sketches based on exponential histograms can be merged
with very small information loss. Compared to the lossless
merging of ECM-sketches based on randomized waves, ECM-
EH are substantially more compact, and are therefore ap-
plicable for a wider range of application scenarios, where
network cost and/or memory is of the essence, such as P2P
networks, sensor networks, and network routers.

7.3.2 Continuous Monitoring

The final set of experiments investigates the suitability of
ECM-sketches in combination with the geometric method
for distributed continuous monitoring, as discussed in Sec-
tion 6 (denoted as A

ecm

hereafter). Particularly, we consider
monitoring of the self-join size of a high-dimensional vec-
tor v that corresponds to sliding window statistics (i.e., item
frequencies) aggregated over n data streams S

1

, S
2

, . . . , S
n

.
Each stream S

i

is monitored by site p
i

, and all sites are en-
abled direct communication with a coordinator. Estimating
the self-join size of such high-dimensional vectors is fre-

quently useful, e.g., for query optimization in distributed
databases, data partitioning, and computing a variety of use-
ful indexes for streams (see [1] for a discussion). We only
consider ECM-sketches constructed with exponential his-
tograms, since these offer the best trade-off between mem-
ory and accuracy. As a baseline, we use the centralized algo-
rithm (denoted as A

cen

), which relies on a central coordina-
tor for collecting all updates from the remote sites and main-
taining the accurate self-join size. Notice that A

cen

has sev-
eral practical considerations besides the high network cost,
i.e., the coordinator still needs to efficiently maintain the
high-dimensional statistics over a sliding window, which is
challenging to achieve without ECM-sketches. Yet, we ig-
nore this issue for our experiments. Both algorithms were
allowed a warm-up phase (until the sliding window filled up
for first time) before starting to measure cost and quality.

Figure 8(a) presents the transfer volume required by A
ecm

for different network sizes as a ratio of the corresponding
transfer volume of A

cen

. The results correspond to a config-
uration of A

ecm

with � = ✏ = ✓ = 0.15. Clearly, A
ecm

is
substantially more efficient than the baseline, enabling net-
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Fig. 8 (a)-(b) Network cost and observed error for different network sizes, (c) Effect of the value of ✓.

work savings of up to two orders of magnitude for networks
up to 32 sites. As expected, increasing the network size leads
to an increase of the communication cost of A

ecm

(the cost
of A

cen

does not change). This is a known characteristic of
the geometric method. Nevertheless, even for the network of
256 sites, A

ecm

still requires less than half the cost of A
cen

.
We also see that caida is slightly more difficult to monitor
compared to wc98. This is because wc98 is more stable than
caida, i.e., as soon as the sliding window is filled, self-join
size changes very slowly. Caida data set, on the other hand,
is by nature more dynamic, causing more frequent threshold
violations, and a higher network cost.

The average observed error for the same runs is shown
in Figure 8(b). Even though error slightly increases with net-
work size, the increase is negligible, and the error always
remains smaller than the value of parameter ✓, i.e., the error
tolerance of the geometric method. All results are consistent
for both data sets.

We have also tested the sensitivity of A
ecm

on param-
eter ✓. The results in Figure 8(c) correspond to a fixed net-
work of 16 sites, with � and ✏ set to 0.15. As expected, in-
creasing ✓ drastically reduces the network cost of the algo-
rithm: for a higher ✓, A

ecm

causes less threshold crossings,
requiring less synchronizations of both phases. As an indi-
cation, for the caida dataset and for ✓ = 0.05, A

ecm

required
7133 first-phase synchronizations (i.e., synchronizations on
d
u

|d
l

only) and 2694 second-phase synchronizations (on the
full sketches). For ✓ = 0.3, these synchronizations were re-
duced to 5637 for the first phase, and only 457 for the second
phase.

Summarizing, the experiments have shown that the com-
bination of ECM-sketches with the geometric method can be
used for efficiently monitoring of non-linear functions, such
as the self-join size, in distributed settings. The network sav-
ings are substantial compared to the baseline algorithm that
forwards all updates to a central coordinator, and typically
exceed two orders of magnitude for small networks, whereas
the observed error is negligible.

8 Conclusions

In this work we considered the problem of answering com-
plex queries over distributed and high dimensional data
streams, in the sliding window model. Our proposal, ECM-
sketches, is a compact structure combining the state-of-the-
art sketching technique for data stream summarization with
deterministic sliding window synopses. The structure pro-
vides probabilistic accuracy guarantees for the quality of the
estimation, for point queries and self-join size queries, and
can enable a broad range of problems, such as finding heavy
hitters, computing quantiles, and answering range queries
over sliding windows.

Focusing on distributed applications, we also showed
how a set of ECM-sketches, each one representing an in-
dividual stream, can be merged to generate a single ECM-
sketch that summarizes the stream produced by the order-
sensitive merging of all individual streams. Interestingly, this
is the first result in the literature enabling such merging for
deterministic sliding window synopses (or sketches based
on these), and it is of high importance since deterministic
synopses are generally a factor of O(log(1/�)/✏) more com-
pact than the best-known randomized synopsis for deliver-
ing an ✏-accurate approximation. In the same context, we
demonstrated how ECM-sketches can be exploited within
the geometric method for answering continuous queries de-
fined over sliding windows.

ECM-sketches were thoroughly evaluated with a set of
extensive experiments, using two massive real-world datasets,
and considering both centralized and distributed setups. The
results verified the high performance of the structure. Com-
pared to structures based on randomized sliding window syn-
opses, ECM-sketches improve the memory and computa-
tional complexity by at least one order of magnitude. The
same magnitude of improvement is observed with respect to
the network requirements.

Our future work will focus on further optimizations for
continuous distributed queries. Two interesting open prob-
lems include considering other query types, and concurrently
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executing multiple continuous queries. In Section 6 we have
already discussed initial optimizations for concurrent execu-
tion of many queries. We expect that both computation and
network complexity can be reduced further by coordinating
the synchronization process between the queries, and taking
the accuracy requirements of each query into account during
the synchronization process.
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Appendix

A Proofs for centralized queries

Lemmas 3 and 4 provide error guarantees for point and inner product
queries on ECM-sketches, for any set of ✏

cm

, ✏
sw

, �
cm

and �
sw

. With
Theorems 2 and 3 we derive the optimal values of these parameters
(the ones that minimize the total cost), given only the acceptable total
✏ and �.

Lemma 3 With probability at least 1� �
cm

� �
sw

,

| ˆf(x, r)� f(x, r)| 

(
(1 + ✏

sw

)✏
cm

||a
r

||1 if ✏
sw

 ✏cm
1�✏cm

,

✏
sw

||a
r

||1 if ✏
sw

� ✏cm
1�✏cm

.
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Proof We start with an overview of the proof. The ECM-sketch es-
timation is susceptible to two types of errors. The first is due to the
hash collisions, i.e., two different items may hash to the same ECM-
sketch cell. This error is relative to the L1 norm. The second is due to
the sliding window counters, and is relative to the counter value, i.e.,
the number of items hashed to the particular counter. For the lemma,
we derive a single error relative to the L1 norm by considering worst-
case bounds (i.e., maximum possible values) for the combination of
the two errors. We first bound the number of hash collisions that occur
at counter (j, h

j

(x)) for any row j  d within the query range r, as-
suming that the sliding window algorithm offers perfect accuracy. The
proof stems from the accuracy proof for Count-min sketches [11], dif-
ferentiating on the estimation step of the number of hash collisions (by
offering an error relative to ||a

r

||1 � f(x, r), instead of ||a
r

||1). Then,
we consider the error caused by the sliding window estimation.

Error due to hash collisions. Temporarily assume that the slid-
ing window structure enables perfect accuracy (the assumption will be
lifted later). With I

x,j,y

we denote the indicator variables which are
1 if x 6= y ^ h

j

(x) = h
j

(y), and 0 otherwise. We further define the
variables X

x,j,r

to be X
x,j,r

=

P
y2D I

x,j,y

f(y, r). By our assump-
tion that the sliding window estimation is accurate, E(j, h

j

(x), r) =

f(x, r) + X
x,j,r

. Since the ECM-sketch will return ˆf(x, r) =

min

j

E(j, h
j

(x), r) = f(x, r) + min

j

X
x,j,r

as a frequency esti-
mate, the estimation error will be ˆf(x, r) � f(x, r) = min

j

X
x,j,r

,
which can be bounded as follows.

By pairwise independence of the hash functions: E(I
x,j,y

) =

Pr[h
j

(x) = h
j

(y)]  1/w =

✏

e

. Therefore, the expected value of
X

x,j,r

is E(X
x,j,r

) = E
�P

n

k=1 I
x,j,y

f(k, r)
�

=P
8k2D\{x} f(k, r)E(I

x,j,y

)  (||a
r

||1 � f(x, r)) ✏

e

. Furthermore,
by Markov inequality:

Pr[min

j

X
x,j,r

> ✏(||a
r

||1 � f(x, r))] =

Pr[8j : X
x,j,r

> ✏(||a
r

||1 � f(x, r))] 

Pr[8j : X
x,j,r

> eE(X
x,j,r

)] < e�d  �
cm

(1)

Error due to the sliding window estimation. In practice, the
sliding window algorithm may introduce errors to the computation of
E(j, h

j

(x), r). Let R(j, h
j

(x), r) denote the accurate number of bits
contained within the query range at counter (j, h

j

(x)). Then, an (✏, �)-
approximate sliding window algorithm guarantees that
Pr[E(j, h

j

(x), r)�R(j, h
j

(x), r)  ✏
sw

R(j, h
j

(x), r)] � 1� �
sw

.
Consider row j = minarg

j

E(j, h
j

(x), r), i.e., the row with
E(j, h

j

(x), r) = ˆf(x, r) . For the case that ˆf(x, r) > R(j, h
j

(x), r),
we have:

Pr[ ˆf(x, r)  (1 + ✏
sw

)R(j, h
j

(x), r)] � 1� �
sw

)
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)

� 1� �
sw

Furthermore, X
x,j,r

can be bounded by Inequality 1, giving:
Pr[ ˆf(x, r) � f(x, r)  ✏

cm
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r

||1 � f(x, r)) + ✏
sw

(f(x, r)+
✏
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||1� f(x, r)))] � 1� �
sw

� �
cm

. For convenience we define
c = f(x, r)/||a

r

||1. Then, Pr[ ˆf(x, r) � f(x, r)  ||a
r

||1(✏cm(1 �
c)+✏

sw

(c+✏
cm

(1�c)))] = Pr[ ˆf(x, r)�f(x, r)  ||a
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.
Variable c takes values between 0 and 1 (inclusive). When ✏

sw


✏
cm

/(1� ✏
cm

), the RHS of the inequality (the error) is maximized for
c = 0. Otherwise, the RHS is maximized for c = 1. Therefore, with a
probability of at least 1� �

cm

� �
sw

:

ˆf(x, r)� f(x, r) 

(
||a
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||1✏cm(1 + ✏
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,
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(2)

With a similar analysis, the case of ˆf(x, r) < R(j, h
j

(x), r) gives
a much tighter constraint:

Pr[f(x, r)� ˆf(x, r)  ✏
sw

f(x, r)] � 1� �
sw

(3)

The lemma follows directly by inequalities 2 and 3. ut

Theorem 3
Proof We first consider an ECM-sketch with a deterministic sliding
window structure, e.g., an exponential histogram. We want to derive
the combination of ✏

cm

and ✏
sw

that minimizes the space complexity
of the sketch for a given ✏, i.e., minimizes C(✏) = O(

ln(1/�cm)
✏cm✏sw

). We
study the two cases of Lemma 3 separately:

Case 1 (✏
sw

 ✏cm
1�✏cm

): We first exploit the fact that

✏ = (1 + ✏
sw

)✏
cm

(4)

to eliminate ✏
sw

from the space complexity of the sketch:

C(✏) = O

✓
ln(1/�

cm

)

✏
sw

✏
cm

◆
= O

 
ln(1/�

cm

)

✏�✏cm
✏cm

✏
cm

!
= O

✓
ln(1/�

cm

)

✏� ✏
cm

◆

The cost is minimized when the denominator is maximized. For a fixed
✏ chosen by the user, this happens when ✏

cm

is minimized. The smallest
✏
cm

satisfying Eqn. 4 and the precondition of Case 1 is ✏
cm

=

✏

1+✏

,
resulting to ✏

sw

= ✏.

Case 2 (✏
sw

� ✏cm
1�✏cm

): By Lemma 3, we see that setting ✏
sw

= ✏
we achieve the required accuracy. In order to derive ✏

cm

, notice that
we want to minimize the complexity C(✏) = O(

ln(1/�cm)
✏cm✏sw

). This is
achieved by maximizing ✏

cm

. The maximum value of ✏
cm

satisfying
the precondition of Case 2 is ✏

cm

=

✏

1+✏

.

Notice that both cases lead to the same combination for minimiz-
ing the cost, i.e., ✏

cm

=

✏

1+✏

and ✏
sw

= ✏.

The case of randomized waves is similar. The cost function be-
comes O(ln(1/�

cm

) ln(1/�
sw

)/(✏
cm

✏2
sw

)), with the constraint that
� = �

cm

+ �
sw

. The cost is minimized for �
cm

= �
sw

= �/2,
✏
cm

=

✏

1+✏

and ✏
sw

= ✏. ut

Lemma 4 With probability at least 1� �
cm

,

| \a
r

� b
r

� a
r

� b
r

| 

8
>>>><

>>>>:

||a
r

||1||br||1✏cm(1 + ✏
sw

)

2

if ✏
cm

� ✏

2
sw+2✏sw
(✏sw+1)2 ,

||a
r

||1||br||1(✏2
sw

+ 2✏
sw

)

if ✏
cm

 ✏

2
sw+2✏sw
(✏sw+1)2 .

Proof We first examine the case that \a
r

� b
r

> a
r

� b
r

. Consider
the estimation derived by any single row j of the ECM-sketch. With
E

a

(i, j, r) we denote the frequency estimation of the sliding window
counter at position (i, j) for stream a and for query range r.



22 Odysseas Papapetrou et al.

E((

\a
r

� b
r

)

j

� a
r

� b
r

) =

wX

i=1

E
a

(i, j, r)E
b

(i, j, r)� a
r

� b
r


wX

i=1

X

p2D,

hj(p)=i

f
a

(p, r)
X

q2D,

hj(q)=i

f
b

(q, r) ⇤ (1 + ✏
sw

)

2 � a
r

� b
r

=

wX

i=1

X

x2D,

hj(x)=i

f
a

(x, r)f
b

(x, r) ⇤ (1 + ✏
sw

)

2
+

wX

i=1

X

p,q2D,p 6=q,

hj(p)=hj(q)=i

f
a

(p, r)f
b

(q, r) ⇤ (1 + ✏
sw

)

2 � a
r

� b
r

=(1 + ✏
sw

)

2
(

X

x2D
f
a

(x, r)f
b

(x, r)+

X

p,q2D,p 6=q,

hj(p)=hj(q)

f
a

(p, r)f
b

(q, r))� a
r

� b
r

=a
r

� b
r

(✏2
sw

+ 2✏
sw

)+

X

p,q2D,p 6=q,

hj(p)=hj(q)

f
a

(p, r)f
b

(q, r)(1 + ✏
sw

)

2 (5)

Our next step is to bound
P

p,q2D,p 6=q,

hj(p)=hj(q)

f
a

(p, r)f
b

(q, r). For con-

venience we use X
i,j,r

as a shortcut forP
p,q2D,p 6=q,

hj(p)=hj(q)

f
a

(p, r)f
b

(q, r). Then,

E(X
i,j,r

) =

X

p,q2D,p 6=q

Pr[h
j

(p) = h
j

(q)]f
a

(p, r)f
b

(q, r)

=

1

w

X

p,q2D,p 6=q

f
a

(p, r)f
b

(q, r)


✏
cm

e
(

X

p,q2D
f
a

(p, r)f
b

(q, r)� a
r

� b
r

)

X
i,j,r

can be bounded by Markov inequality:

Pr[min

j

X
i,j,r

> ✏
cm

(

X

p,q2D
f
a

(p, r)f
b

(q, r)� a
r

� b
r

)] =

Pr[8j : X
i,j,r

> eE(X
i,j,r

)] < e�d  �
cm

(6)

Let c = ar�br
||ar||1||br||1 . Combining Equation 5 and Inequality 6:

\a
r

� b
r

� a
r

� b
r

a
r

� b
r

(✏2
sw

+ 2✏
sw

) +

X

p,q2D,p 6=q,

hj(p)=hj(q)

f
a

(p, r)f
b

(q, r)(1 + ✏
sw

)

2

<a
r

� b
r

(✏2
sw

+ 2✏
sw

) + (1 + ✏
sw

)

2
min

j

X
i,j,r

a
r

� b
r

(✏2
sw

+ 2✏
sw

)+

(1 + ✏
sw

)

2✏
cm

0

@
X

p,q2D
f
a

(p, r)f
b

(q, r)� a
r

� b
r

1

A

=a
r

� b
r

(✏2
sw

+ 2✏
sw

) + (1 + ✏
sw

)

2✏
cm

(||a
r

||1||br||1 � a
r

� b
r

)

=c||a
r

||1||br||1(✏2
sw

+ 2✏
sw

) + ✏
cm

(1 + ✏
sw

)

2||a
r

||1||br||1(1� c)

=||a
r

||1||br||1
�
c(✏2

sw

+ 2✏
sw

) + ✏
cm

(1 + ✏
sw

)

2
(1� c)

�

with probability at least 1� �
cm

.

The values of c that maximize the error (the RHS) are c = 1 when
✏
cm

<
✏

2
sw+2✏sw
(✏sw+1)2 , and c = 0 when ✏

cm

� ✏

2
sw+2✏sw
(✏sw+1)2 . The corre-

sponding maximum errors are ||a
r

||1||br||1(✏2
sw

+ 2✏
sw

) (for c = 1),
and ||a

r

||1||br||1✏cm(1 + ✏
sw

)

2 (for c = 0).
With a similar analysis, the case of \a

r

� b
r

< a
r

� b
r

gives a
tighter constraint: Pr[a

r

� b
r

� \a
r

� b
r

> (✏2
sw

+ 2✏
sw

)a
r

� b
r

] <
�
sw

. The lemma follows directly. ut

Theorem 2
Proof Similar to the analysis for point queries, we need to consider the
two cases of Lemma 4 separately.

Case 1 (✏
cm

� ✏

2
sw+2✏sw
(✏sw+1)2 ): By Lemma 4, we set ✏

cm

(1+✏
sw

)

2
=

✏ in order to achieve the required accuracy. The space complexity then
becomes C(✏) =

1
✏sw✏cm

=

(1+✏sw)2

✏✏sw
. Since (1+✏sw)2

✏✏sw
is strictly

decreasing for ✏
sw

in the interval [0, 1], we can minimize the space
complexity by setting the maximum value for ✏

sw

satisfying the case’s
precondition ✏

cm

� ✏

2
sw+2✏sw
(✏sw+1)2 , i.e., ✏

sw

=

p
✏+ 1 � 1. Then, ✏

cm

becomes equal to ✏

✏+1 .

Case 2 (✏
cm

 ✏

2
sw+2✏sw
(✏sw+1)2 ): By Lemma 4, in order to achieve

the required accuracy we need to set ✏2
sw

+ 2✏2
sw

= ✏ ) ✏
sw

=p
✏+ 1� 1. Accordingly, ✏

cm

=

✏

✏+1 .
Notice that, similar to the point queries analysis, the two cases lead

to the same configuration for minimizing the cost, i.e., ✏
cm

=

✏

✏+1 and
✏
sw

=

p
✏+ 1� 1. ut

B Proofs for distributed setups

Theorem 4 derives worst-case error bounds for the merging of expo-
nential histograms. Lemma 2 and Theorem 5 prove the correctness of
the algorithm for continuous self-join size queries.
Theorem 4
Proof We argue that EH� approximates the exponential histogram
of the logical stream, with a maximum relative error of ✏ + ✏0 + ✏✏0,
where ✏ is the error parameter of the initial exponential histograms.
Consider a query for the last q time units. With s

q

= t � q we denote
the query starting time. Let Q denote the index of the bucket of EH�
which contains s

q

in its range, i.e., s(EHQ

� )  s
q

 e(EHQ

� ). With
i and ˆi we denote the accurate and estimated number of true bits in
the query range. According to the estimation algorithm, the estimation
for the number of true bits in the stream will be ˆi = 1/2|EHQ

� | +P
1Y <Q

|EHY

� |. This estimation may be influenced by two types of
approximation errors: (a) a possible approximation error of the overlap
of bucket EHQ

� with the query range, denoted as err1, and, (b) a possi-
ble approximation error of i, denoted as err2, because of the inclusion
of data that arrived before s

q

in buckets Y  Q, or data that arrived
after s

q

in buckets Y > Q. Let us now look into these two errors in
more details.

With respect to err2, recall that the contents of individual buck-
ets are inserted to EH� using the starting time and the ending time
of the buckets. Therefore, it may happen that some bits arrive before
s
q

but are inserted to EH� with a timestamp after s
q

, creating ‘false
positives’. The opposite is also possible. These bits are called out-of-
order bits with respect to s

q

. Clearly, out-of-order bits may lead to
underestimation or overestimation of the query answer. According to
Lemma 5, the number of out-of-order bits originating from each expo-
nential histogram EH

x

is at most ✏i
x

, with i
x

denoting the accurate
number of true bits that were inserted in EH

x

at or after s
q

. The num-
ber of out-of-order bits from all streams is then bounded as follows:
err2 

P
n

x=1 ✏i
x

= ✏
P

n

x=1 i
x

= ✏i.
Underestimation or overestimation of the overlap may also happen

because of the halving of the size of bucket EHQ

� during query time
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(err1). As shown in [16], this process may introduce a maximum rela-
tive error of ✏r, where r is the sum of the sizes of all buckets in EH�
with an index lower than Q (i.e., with a starting time at least equal to
s
q

). Recall that r may also include bits that have arrived before s
q

(the
out-of-order bits), which is however upper-bounded by ✏i, as discussed
before. Therefore, the maximum underestimation or overestimation er-
ror is err1 = ✏0r  ✏0(i+ ✏i) = ✏0i+ ✏✏0i, with i =

P
n

x=1 i
x

.
Summing err1 and err2, we get a maximum relative error of (✏+

✏0 + ✏✏0), which completes the proof. ut

Lemma 5 Consider an individual exponential histogram
EH

x

of stream X, configured with error parameter ✏. The out-of-order
bits with respect to the query starting time s

q

that EH
x

can generate
are at most ✏i

x

, with i
x

denoting the number of true bits arriving at or
after s

q

in X.

Proof Due to the non-decreasing nature of bucket timestamps, there
can be only one bucket with a start time less than s

q

and end time
greater than or equal to s

q

. Let this bucket be EHj

x

. All other buckets
have both starting and ending time at the same side of s

q

, and therefore
their contents are always inserted with a timestamp at the correct side
of s

q

and do not create out-of-order bits.
Since the ending time of EHj

x

is at or after s
q

, its most recent true
bit has arrived at or after s

q

, and should be included in the query range.
Therefore, the number of true bits arriving at or after s

q

in stream X

is i
x

� 1 +

P
j�1
b=1 |EHb

x

|. Furthermore, since half of the bits of EHj

x

are inserted using the ending time and half using the starting time of
the bucket, the maximum number of out-of-order bits is |EHj

x

|/2. By
construction (invariant 1):

|EHj

x

|

2(1 +

j�1X

b=1

|EHb

x

|)

 ✏ )
|EHj

x

|
2

 ✏(1 +

j�1X

b=1

|EHb

x

|)  ✏i
x

ut

Lemma 2
Proof The proof relies on the following properties of the min:
Monotonicity: If x[i]  y[i] for all i, then min

i

{x[i]}  min

i

{y[i]}.
Distributivity: For any monotonically increasing function f ,

min

i

{f(x[i])} = f(min

i

{x[i]}).
We want to derive sufficient conditions such that (1�✓)f(v(t)) 

f(v(t0))  (1+✓)f(v(t)), with f(v(t)) = min

d

row=1{||v[row]||2}.
By the distributivity property of the min for monotonically increasing
functions (i.e., the square root), it is sufficient to verify:
s

f(v(t0))

1 + ✓


d

min

row=1
{||v(t)[row]||} 

r
f(v(t0))

1� ✓
.

By the triangle inequality:

||v(t)[row]� v(t0)[row]|| 
nX

j=1

||v
j

(t)[row]� v

j

(t0)[row]||

=

nX

j=1

d
j

[row] = nd[row] )

||v(t0)[row]||� nd[row] ||v(t)[row]||  ||v(t0)[row]||+
nd[row] (7)

Notice that ||v(t0)[row]|| is constant per synchronization. Therefore,
Inequality 7 bounds ||v(t)[row]|| by a linear relation of d, i.e., it allows
us to form threshold-crossing queries in the Rd space. By monotonicity
of the min, it suffices to monitor the following conditions:

d

min

i=1
{||v(t0)[i]||+ nd[i]} 

r
f(v(t0))

1� ✓

and
d

min

i=1
{||v(t0)[i]||� nd[i]} �

s
f(v(t0))

1 + ✓
.

The lemma follows directly, by dividing both sides of the conditions
by n. ut
Theorem 5
Proof Sketch: By construction, all counters of vu

i

(t) are at least equal
to the corresponding counters of v

i

(t). Therefore, the self-join size es-
timate for vu

i

(t) will be at least equal to the self-join size estimate for
v

i

(t) at all times. Using Lemma 2 to monitor v but only considering
the shifts which increase the counters, we get that if

min

d

row=1{
||v(t0)[row]||

n

+ du

[row]}  1
n

q
f(v(t0))

1�✓

, then
f(v(t0))  (1 + ✓)f(v(t)). The lower bound is shown analogously.
ut



TOPiCo: Detecting Most Frequent Items
from Multiple High-Rate Event Streams

Valerio Schiavoni⇤,
Etienne Rivière,

Pierre Sutra,
Pascal Felber

Université de Neuchâtel,
Switzerland

Miguel Matos,
Rui Oliveira

INESC TEC & University of
Minho, Portugal

ABSTRACT
Systems such as social networks, search engines or trading
platforms operate geographically distant sites that continu-
ously generate streams of events at high-rate. Such events
can be access logs to web servers, feeds of messages from
participants of a social network, or financial data, among
others. The ability to timely detect trends and popularity
variations is of paramount importance in such systems. In
particular, determining what are the most popular events
across all sites allows to capture the most relevant informa-
tion in near real-time and quickly adapt the system to the
load. This paper presents TOPiCo, a protocol that com-
putes the most popular events across geo-distributed sites in
a low cost, bandwidth-e�cient and timely manner. TOPiCo
starts by building the set of most popular events locally at
each site. Then, it disseminates only events that have a
chance to be among the most popular ones across all sites,
significantly reducing the required bandwidth. We give a
correctness proof of our algorithm and evaluate TOPiCo us-
ing a real-world trace of more than 240 million events spread
across 32 sites. Our empirical results shows that (i) TOPiCo
is timely and cost-e�cient for detecting popular events in
a large-scale setting, (ii) it adapts dynamically to the dis-
tribution of the events, and (iii) our protocol is particularly
e�cient for skewed distributions.
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1. INTRODUCTION
The collection of aggregates and statistical metrics over

online data streams has attracted considerable attention from
both academia and industry over the past decade. Mining
the properties of such data streams can be used in various
contexts, ranging from targeted advertisement [6], network
analysis [7, 25], or automated virus detection [20]. Of the
various statistical information that can be computed over
a stream, identifying the distribution of the events is of
practical interest. This information might help a content
delivery network infrastructure to dimension its caches using
the stream of web access logs. It can also detect sudden
changes in popularity, e.g., flash crowds phenomena or denial
of service attacks.

Practical streaming systems exhibit heavy-tailed distribu-
tions. Moreover, in a vast majority of use cases, only the
most frequent items are required. As a consequence, col-
lecting and storing the frequency of all events to compute
only the k most frequent ones is a waste of resources. This
observation is particularly acute in a geo-distributed setting,
where distinct sites might receive distinct stream of events.
Detecting the k most frequent items is a form of top-k query
processing, where the query is simply the sum of occurrences
grouped by item. As a consequence, we shall use the term
top-k frequent items in the remainder of this paper.1

We are interested in the construction of the top-k frequent
items from the union of multiple streams. These di↵erent
streams are generated at multiple geographically distant
locations. We consider the following motivating scenario. A
set of geo-distributed servers located in di↵erent regions of
the world support the information needed for a large-scale
event, e.g., the Olympics or the FIFA World Cup. Servers
receive and emit messages, similarly to the Twitter service,
for the local area. Participants and spectators can comment
and react while the events occur, online. Messages are tagged
with keywords regarding the event, e.g., the names or moods
of the participants. Each site maintains the top-k frequent
keywords over a sliding window, allowing to observe the
trends for a particular region. We are also interested in
computing the most frequent keywords at the scale of the
geo-distributed infrastructure. Such information is used

1As pointed out by [26], our problem di↵ers from the simple
top-k problem where unique items with the highest values
for a given attribute are returned, which is merely a selection
problem [2]. A top-k query problem on the opposite, e.g., top-
k counting and top-k frequent items, requires to aggregate
multiple instances of the same item from di↵erent sites.



locally, for instance, to see in near real-time the di↵erences
between local and global trends. A naive solution for such
a scenario consists in redirecting all the streams towards
all the sites. Obviously, this solution does not scale with
the number of sites, nor with the geo-distribution. Besides,
although solutions exist for speeding up data streams over
multiple data centers [22], they have huge bandwidth costs,
as well as higher-than-required computational power.
We are thus interested in maintaining the global top-k

frequent items in a multi-site information system. The global
top-k frequent items set is referred as G in the remainder of
this paper. We assume that each site maintains, using an
existing single-site algorithm, the local top-k frequent items
for its own stream. This local top-k frequent items set for
site i is denoted as L

i

. Our goal is to construct, at each site
i, a version of the global top-k frequent items, denoted as
G
i

. The construction of G
i

is based on a combination of L
i

and of information received from the other sites. The global
top-k frequent items set G is never materialized as there is
no centralized entity receiving all the streams without trans-
mission delays. The objectives for the construction of G

i

at
each site are twofold. First, we want to minimize the amount
of information that is exchanged between sites. Second, we
want to minimize the deviation between G

i

maintained at
one site, and the hypothetical and ideal content of G, as con-
structed by an omniscient observer collecting all the streams
in real time.

Contributions. We make the following contributions to
the top-k frequent items problem. We propose TOPiCo, a
novel protocol for computing an accurate view of the globally
most frequent items at the scale of multiple geo-distributed
sites. Our protocol leverages the presence of a continuously
maintained local list of the top-k frequent items at each site.
Sites exchange such lists up to a certain depth, while ensur-
ing that the global view G

i

computed at each site e↵ectively
contains the appropriate elements and their respective fre-
quencies, within reasonable and practical delay. We provide
a correctness proof of the protocol, as well as an extensive ex-
perimental evaluation using a prototype and fed with traces
of 240 million events received on 32 sites, collected during
the FIFA World Cup’98 [1]. The evaluation confirms that
TOPiCo is a lightweight approach and shows that it is able
to dynamically adapt to the items distribution. The rest of
the paper is organized as follows: Section 2 discusses related
work. Section 3 precisely formulates the top-k frequent items
problem and circumscribe the conditions under which this
problem is solvable. Section 4 details our TOPiCo proto-
col and covers its correctness proof. Section 5 presents our
experimental evaluation of the TOPiCo prototype. Finally,
Section 6 concludes the paper.

2. RELATED WORK
The problem of e�ciently computing the results of top-

k frequent items from a stream has been considered both
in centralized and distributed settings. Our focus is on the
construction of the global top-k frequent items sets G

i

at each
sites of a distributed system rather than the construction of
the local top-k frequent items sets L

i

for each individual sites.
The construction of L

i

employs a centralized algorithm, which
can be implemented using a stream processing engine [3, 12].
As this construction is not the focus in this paper, we use
a simple counting-based approach and concentrate on the
distributed aspects. We provide nonetheless a review of

centralized solutions and alternatives that can be used to
build L

i

at each site, as well as similar and related problems
that could benefit from our distributed algorithm. Then,
we review distributed algorithms and protocols allowing to
compute G, by collecting information from multiple sites.
Note that the problem of top-k frequent items is sometimes
called the heavy hitters problem in the literature.

2.1 Centralized top-k frequent items
Ilyas et al. [13] present a survey of top-k query algorithms

for centralized single site relational database systems. The
queries that they consider include counting queries, which
themselves include frequent items queries. The survey how-
ever does not consider the data streaming model but only
instantaneous queries.
The FREQUENT algorithm of Misra and Gries [18] was

an early approach proposed for the detection of frequently
occurring items in an infinite stream. It allows outputting
the set of elements that account for more than a fraction 1

f

of
the total stream size, i.e., to return the set j : c

j

>

c

f

where
c is the size of the stream seen so far, and c

j

is the number
of occurrences of element j. This is a di↵erent problem than
ours, as top-k frequent items may be less present in the
stream than c

f

even for f � k + 1. The algorithm maintains
f � 1 counters, associated with unique items. For each item
seen in the stream, the corresponding counter is incremented
if it exists (or created if there are unused counter). Otherwise,
all counters are decremented and freed when they reach zero.
The counters are eventually associated with up to f�1 items
that are present in more than a fraction 1

f

of the stream.
The Count-Min sketch of Cormode and Muthukrishnan [5]

is a data structure dedicated to the summarization of data
streams. It can allow detecting the most frequent items,
among several other operations. It would be a possible
alternative for the computation of the L

i

at each site.
Lahiri et al. [14] consider the problem of tracking persistent

items in a stream. This is a di↵erent, but complementary
problem to top-k frequent items. Computing both sets can
allow indicating trends over time or detect sudden changes
in popularity of items.
Wang et al. [24] propose a framework to execute top-k

pattern queries. Such queries allow recognizing the most
frequent sequences of events for which the patterns corre-
sponding to the interdependency conditions apply. This
technique uses adaptive join scheduling strategies and strati-
fied stream graphs. The output could be used as the local
top-k frequent items set L

i

used in our algorithm, allowing
to compute the result of a global top-k pattern query.

Wong and Fu [26] present a probabilistic solution for top-k
frequent item sets over a stream. The problem they consider
is more general than the one we consider in this paper. Their
goal is to detect the most frequent item sets, i.e., set of
l items that frequently appear together from a stream of
transactions. Note that the two problems are equivalent if
l = 1, i.e., when considering individual items. The authors
propose two algorithms that can derive the top-k frequent
item sets from a complete stream without prior knowledge of
its statistical characteristics: an algorithm based on Cherno↵
bounds and the Top-k Lossy Counting algorithm. These
algorithms could also be candidate for computing L

i

at each
of site. Furthermore, when combined with our contribution,
they allow to compute the global top-k frequent item sets at
each site.



The Vitter’s reservoir [23] samples uniformly a complete
stream using a fixed-size reservoir, which is simply an array of
samples. The reservoir allows estimating the distribution of
events from the beginning of the stream. If this distribution
of events presents enough skew (e.g., the popularity follows
a power law), a large enough reservoir may allow answering
top-k frequent items. However, there is no guarantee: Items
belonging to the most frequent ones may simply be missed if
there are not sampled enough in the reservoir.

2.2 Distributed top-k frequent items
The threshold algorithm (TA) of Fagin et al. [9] computes

the top-k frequent items from a collection of items in inde-
pendent sets. The algorithm does not consider data streams
but static sets, which correspond to independent disk drives
in a relational database setting. They can be considered
as sites in our system model. A coordinator process com-
putes G through several rounds of interaction with the sites.
Each of the site maintains its list of items in decreasing
frequency order. The algorithm goes down the list at all
sites in parallel. In its TA-random variation, the algorithm
computes for each new item its aggregate value. This re-
quires being able to perform random accesses to the lists. A
variant for systems, where only sequential access is possible
(or preferred), is named the TA-sorted or NRA in [9], as well
as Stream-Combine in an independent work by Guntzer et
al. [11]. TA-sorted first computes the set of items that are
part of the top-k frequent items, without calculating their
exact aggregate count values. It requires an additional final
pass to perform these aggregations. For both TA-random and
TA-sorted, thresholds are computed to allow determining
when elements that are down the lists at each site will not be
included in the top-k frequent items, that is, their aggregate
value cannot be higher than the kth element in G. The thresh-
old can be exact in the TA-random case or approximated by
bounds of worst and best possible scores for TA-sorted. Since
lists are sorted in decreasing frequency order, the algorithm
can stop when new elements have frequency lower than the
(worst case) threshold.

Both threshold algorithms require O(N2) operations, where
N is the number of sites. The number of iterations is also
unbounded, and depends on the similarity of rankings be-
tween the di↵erent L

i

of the di↵erent sites . In a distributed
setting, this prevents from giving any guarantee on the delay
of calculation of G at the coordinator. While this might be
acceptable in a relational database setting, it is not adapted
in a distributed data streaming model. Such an arbitrary de-
lay may incur an important and uncontrollable drift between
the content of G

i

at the coordinator and the actual G an
omniscient observer would obtain. Furthermore, the number
of iterations at a site depends on the popularity distribution
of items at that particular site. This may lead to the con-
tent of G

i

being based on sliding windows for uncorrelated
time periods at the di↵erent sites. As a consequence, in
both cases, the final content of G

i

might be inadequate to
e↵ectively detect trends across all sites in a timely manner.
Probabilistic versions of the threshold algorithms named

the Prob-sorted algorithms family, were proposed by Theobald
et al. [21]. They produce estimations of G based on proba-
bilistic score predictions. This allows reducing the number
of accesses to the lists at each site, in particular when the
order of elements highly di↵er from one site to another, but

does not guarantee that the exact scores for the aggregate
count values are computed.
The TPUT algorithm of Cao and Wang [4] addresses the

limitation of the threshold algorithm for static data sets. It
explicitly targets a distributed setting with a coordinator
site that computes the value G through interaction with the
other sites. Unlike the threshold algorithm, TPUT requires
3 rounds between the coordinator and the sites. In the first
round, the algorithm computes a lower bound ⌧ on the value
associated with the k

th element in G. Each site sends its top-
k elements from L

i

to the coordinator, which uses the bottom
value computed by the aggregation of these lists as ⌧ . In the
second round, the coordinator selects the threshold T = ⌧

N

.
All sites then send back the elements not previously sent
with a frequency of at least T . At this point, the coordinator
can determine an overset S of the elements that form G. A
third round is required to collect the actual values associated
with the elements in S, in order to determine the final and
exact content of G.
TPUT operates on a static set; it does not consider the

data streaming model, nor computations on sliding windows.
Furthermore, it uses a single coordinator site, while our
problem is to compute G

i

at each site. TPUT could be
instantiated with a coordinator at each site: In this case,
each site would have to perform the three phases and pull
information from all the other nodes. Our approach is the
opposite. Each site decides on its own using only local
information what it needs to send to the others. This allows a
single, one way communication to inform about the evolution
of L

i

, and therefore the changes to the G
i

on other sites, in
comparison with the three two ways communication and the
resulting higher delays and load with TPUT. We also exploit
the evolution of L

i

through time whereas TPUT is essentially
a one-shot algorithm that recomputes G from scratch for each
new query.
Manjhi et al. [16] consider the top-k frequent items prob-

lem with multiple sites where sites are organized in a tree
structure. Their approach is to build an approximate version
of G. They allow nodes to define the degree of precision,
and introduce the notion of precision gradient that captures
the precision of the combination of approximate frequency
counts along the tree, with the goal of minimizing the band-
width cost as much as possible. We do not consider the use
of a rigid overlay between nodes, and we target a complete
computation of the top-k frequent items at all nodes.
Michel et. al [17] present the KLEE system which target

a range of top-k queries including counting, and thus cover
top-k frequent items. This solution works for P2P networks,
and it provides an approximate computation of G. It is
unclear how the solution can be evolved to support a data
streaming model, or a model that supports dynamic data
sets in general.

Some solutions are based on gossip-based protocols, where
a periodic interaction takes place between pairs of nodes in
a probabilistic manner, and with no complete membership
information maintained at each node. Lahiri and Tirtha-
pura [15] present such a gossip-based algorithm using adap-
tive sampling techniques. Their algorithm can consider abso-
lute thresholds (more than a certain quantity of items are
present in the system, regardless of its size), and relative
thresholds similar to the model used by Misra-Gries [18]. The
set of the probabilistically most frequent items is available
at all peers after convergence. Sacha and Montresor [19]



present another gossip-based protocol that targets the same
problem but achieves a higher e�ciency. Guerrieri et al. [10]
present an evolution of the algorithm of Sacha and Montre-
sor [19] to account for the addition and deletion of items. It
is nonetheless unclear if any of these approaches could be
adapted to sets of events that evolve very rapidly over time,
and in particular to the data streaming model. Furthermore,
even the addition and removal of items may be reflected
after several rounds of gossiping as it is di�cult to track and
remove items that rapidly leave the window of interest. This
indicates that such decentralized solutions are more adapted
to static sets with complete periodic re-computation, or to
slowly evolving sets where the delay of propagation is less
an issue.

3. TOP-K FREQUENT ITEMS PROBLEM
This section defines the elements of our system model,

then introduces the problem of computing the top-k frequent
items over a distributed set of streams. Further, we state
two results regarding the space complexity of every solution.
These results serve as guidelines to our TOPiCo protocol.

3.1 System model
We consider a system composed of N distributed sites

that communicate through message-passing. For the sake
of simplicity, we assume that the communication graph is
complete, and that sites are able to send/receive messages
via a reliable communication medium. We shall precise our
synchrony assumptions in the following.
Every site i receives a continuous stream s

i

of events at
some rate �

i

. Each event in the streams refers to some
uniquely identified item (e.g., a topic, a keyword). We note
Items the countable set of items, and we assume some order-
ing < over Items. Every time a site i receives an event e, i
tags e with the reception time. Based on this timestamping
mechanism, every site i continuously keeps track of the events
received within a time-based sliding window W

i

of length ⌧ .
The top-k frequent items problem requires to compute at

each site a view of the most frequent items received globally,
across all sites, within the last ⌧ units of time. To model
this problem, we consider that each site i holds two data
structures L

i

and G
i

, as described next:
- Variable L

i

maintains the local top-k frequent items.
This variables stores in order the items received at site
i, together with their respective number of occurrences
in the time window W

i

(ties are broken according to
<). For the sake of simplicity, we shall be assuming
hereafter that L

i

contains in fact all the items in W

i

with their number of occurrences in a sound order.
- Variable G

i

stores the global top-k frequent items as
collected by site i. This means that G

i

contains the
local view at site i of the k most frequent items received
globally in the streams (�

i

)
i

during the last ⌧ units of
time.

To illustrate the above data structures, consider that site
i received items “x” at times 1 and 2, and respectively “y”
and “z” at times 3 and 4. Further consider that the sliding
window length equals 3. In such a case, at time t = 3, we
have L

i,3 = {(“x”, 2), (“y”, 1)}, while at time t = 4, L
i,4 =

{(“x”, 1), (“y”, 1), (“z”, 1)} holds. Then, if we consider that
k = 1 and < is the Lexicographical order, we have G

i,3 =
{(“x”, 2)} and L

i,4 = {(“z”, 1)}.

The core task of any top-k frequent items protocol is
to maintain at each site i a value of G

i

consistent with
the content of the streams (s

i

)
i

. Intuitively, we want to
compare the local computation of G

i

against an omniscient
computation of the globally most frequent items. Next, we
state such a notion in more formal terms.

3.2 Problem statement
Let us note G the top-k most frequent items in (s

i

)
i

over
the last period of ⌧ units of time. In the top-k frequent items
problem, the key information is the ordering of the items.
We capture this by measuring the distance d between the
ordering of the items in G and G

i

at some site i.2 For some
site i, we shall note d(G

i,t

,G
t

) the distance between G
i

and
G at time t.

Definition 1. A top-k frequency protocol is perfect when,
for any ✏, lim

t!1d(G
i,t

,G
t

) < ✏ holds.

Clearly, constructing such a perfect algorithm is not always
possible. This might be for instance the case when the stream
rate times the message delay between sites is higher than
one. Indeed, whenever a site i received some information
about the most frequent items at site j, such an information
can be outdated by the arrival of a novel item at site j. The
two results that follow further circumscribe the conditions
under which a perfect solution is constructible for the top-k
frequency problem. With more details, Lemma 1 proves that
the problem requires a bound on the message delay between
sites. Then, we show in Lemma 2 that the existence of a
greatest element in Items for the order < is necessary.

Lemma 1. No top-k frequent items protocol is perfect in
an asynchronous distributed system.

Proof. (By contradiction.) Consider a system with two
sites, i and j, and assume that k = 1 holds. In addition,
suppose that x and y are the two sole items received re-
spectively at sites i and j at rate 1

⌧

, starting from time 0.
Furthermore, consider that x > y holds for the arbitrary
order defined to break ties. It follows that at any time t, x is
the only item in G

t

. Since the system is asynchronous, there
is no bound on the message delay between the two sites. In
particular, for any value of ⌧ , we might consider repeated
arbitrary asynchrony periods longer than ⌧ during which site
j does not receive the messages from site i. During such
a period, G

j

cannot contain only item y as it would di↵er
from G. However, by a simple undistinguishability argument,
we might also consider the exact same run up to that point,
and consider now that site i does not received the events
associated to x during the asynchrony period. Hence, during
such a run, G

j

should only contain y; a contradiction.

Lemma 2. Finding a perfect solution to the top-k frequent
items problem requires a greatest element in Items for the
order <.

Proof. (By contradiction.) Let us consider again two
sites i and j and that k = 1. Stream s

j

is empty, while
stream s

i

is a continuous sequence of distinct items x0, x1, . . .,
growing for the order <, and received at the fixed rate � from
2Our problem definition does not depend on a specific dis-
tance function d. Meaningful distance functions include
Levenshtein’s or the Kendall-Tau rank distance [8]. We use
Kendall-Tau in Section 5.



time 0. In addition, consider some non-null message delay
from site i to site j. Clearly at time t, G

t

equals {(xb t
�c, 1)}.

On the other hand, observe that for any k � 1, at time
t = k ⇥ �, site j never received the item xb t

�c. Hence, the

distance between G
j,t

and G
t

never converges toward 0.

To accommodate with these results, we introduce two
additional properties for top-k frequent items protocols.

Definition 2. A protocol shall be ✏-good when at all time
t, for every site s

i

, d(G
i,t

,G
t

) < ✏ holds.

Definition 3. A top-k frequent items protocol is eventu-
ally perfect when, (G

t

)
t

convergent implies lim
t!1d(G

i,t

,G
t

) =
0.

Section 5 shows that the TOPiCo protocol exhibits on av-
erage a 0.24-goodness factor for the Kendall tau rank distance
during our experiments on the given dataset. Section 4.3
proves that TOPiCo is eventually perfect.

3.3 Resolvability
As pointed out previously, the goal of any top-k frequent

items protocol is to exchange the minimal amount of infor-
mation about the local top-k to ensure that d(G

i,t

,G
t

) is
minimal at each site. This means that a site should send
only the items in L

i

that are likely to enter in G. Of course,
at least the top-k items in L

i

have to be sent to the other
sites. However, it is also obvious that just sending only those
entries is not enough to correctly compute G. We state this
simple observation in the lemma that follows.

Lemma 3. Exchanging the top-k items from L
i

among all
sites is not su�cient to be eventually perfect.

Proof. To prove the above claim, we exhibit a simple
counter-example. We consider two sites i and j such that at
some point in time we have: L

i

= {(a, 10), (x, 6)} and L
j

=
{(d, 9), (x, 5)}. In addition, let us consider that k = 1. If
site i and j only exchange their first entries, i.e., respectively
(a, 10) and (d, 9), we shall have at both sites G

i

= G
j

=
{(a, 10)}. However, we clearly have that G = {(x, 11)}.
Hence, the previous approach never converges toward the
correct solution.

At a consequence of the previous result, we need to deter-
mine locally a value l � k such that sending the top l items is
su�cient to converge toward G. Our next result shows that
such a l exists by proving that a full information protocol is
eventually perfect.

Lemma 4. A full information protocol is an eventually
perfect top-k frequent items protocol.

Proof. Let us first recall that a full information protocol
consists at each site in sending the local state every time this
state changes and storing all historical data. Then consider
some run of this protocol. Since G

t

is convergent, lim
t!1G

t

exists. We note G such limit and T the time after which
G
t>T

= G. Consider some tuple (x,!) in G. From the
definition of G, ! is the aggregated value of the number of
occurrences of x in (L

i,t

)
i

for every t > T . Hence after time
T , computing the top-k frequent items on (L

i,t

)
i

for any
t > T leads to G. Since we make use of a full information
protocol, once every sites i broadcasts L

i

after time t, we
have eventually G

i

= G at all sites.

Despite a full information protocol is a correct solution,
it requires to broadcast an information every time a novel
event is received. This is not practical. On the contrary, the
goal of our TOPiCo protocol is to allow sites constructing
G e�ciently, by forwarding as few information as possible.
In the next section, we detail the internals of our approach,
and prove that TOPiCo is eventually perfect.

4. THE TOPICO PROTOCOL
In this section, we describe the TOPiCo protocol in de-

tail. We first start with an overview of our approach, while
providing key insights on the internals of our solution. The
concluding part of this section provides a formal proof that
TOPiCo is eventually perfect.

4.1 Overview of the protocol
Each TOPiCo site i executes the following two tasks:

(Update) Site i computes locally a list of candidates items that
it broadcasts together with their local number of occurrences
to all sites. (Disseminate) Upon receiving a list of candidates
from some distant site j, a site i updates its global view of
the most frequent items G

i

. To that end, i first sums-up for
each item the contribution received in the candidate lists
from the other sites (such contribution equals 0, if the item
was not received). Then, site i sorts the global contributions
and outputs G

i

. We consider that the system is synchronous,
and that the update task occurs at frequency 1/�.

TOPiCo constructs a list of candidates by determining at
each site a value l � k for which the top-l ranked items in
L

i

have a chance to enter in G. Such an estimation is based
on (i) the global number of occurrences of each item among
the top-k in G

i

, (ii) the number of occurrences of each items
in L

i

, and (iii) the candidates received by remote sites. In
what follows, we cover with more details the internals of our
approach, and how this estimation is computed.

4.2 TOPiCo in detail
Our first key observation in the design of TOPiCo is the

following:

(Observation 1) Consider an item x at some position
lower than k in G. If x enters in the top-k most ranked
items in G, then there exists a site i for which the
number of occurrences of x at i times N is greater than
the number of global occurrence of the item at position
k in G. Thus, item x is at site i a candidate to enter G.

To actually transform the above observation into an al-
gorithm, we must then accommodate with the fact that no
site has access to G. First, every site i executes the above
candidacy test on the items in L

i

, using G
i

. Then, we make
a second observation:

(Observation 2) Consider that some item x passes
the candidacy test at site i, i.e., denoting ! the number
of occurrences of x in W

j

, we have ! ⇥N > G
i

[k � 1].
Item x might fail the candidacy test at some other site
j, for instance if j never receives x. Hence for every
candidate it receives, site j must piggyback its local
number of occurences.

We base our TOPiCo protocol on the above two obser-
vations. Algorithm 1 presents its pseudo-code. In addition



Algorithm 1: TOPiCo at process i

variables1

candidates
i

; // the candidates2

L
i

; // local top-k3

G
i

; // global top-k4

� ; // update period5

task update6

upon receive hUPDATE, Ci from j7

candidates
i

[j] C8

foreach (x, ) 2 C do9

G
i

 G
i

\ {(x, )}10

⌦ 
P

(x,!)2candidatesi
!11

G
i

 G
i

[ {(x,⌦)}12

G
i

 {G
i

[0], . . . ,G
i

[l � 1]} ; // keep top-k13

items

task disseminate (every � second)14

let ( ,�) = G
i

[k � 1] ; // lowest score in top-k15

l k16

while l < |L
i

| do17

let (x,!) = L
i

[l]18

if ! ⇥N � � then19

l l + 1 ; // candidacy test passed20

else21

break22

C  ; n 023

while n < l do24

C  C [ L
i

[n]25

n n+ 126

foreach (x, ) 2 candidates
i

do27

if (x, ) /2 C ^ (x,!) 2 L
i

then28

C  C [ {(x,!)}29

broadcast hUPDATE, Ci to all sites30

to L
i

and G
i

, the protocol uses two additional local vari-
ables: � defines the periodicity of the dissemination task, and
candidates

i

is an array that contains for each site i, the last
candidates received at site i from j.
In details, TOPiCo works as follows. The update task

is in charge of maintaining the candidates at every site i.
Upon the reception of a new set of candidates C from some
site j (which might be i), the update task assigns C to
candidates

i

[j] (line 8). Then, the computation of G
i

takes
place. For every item x in C, site i computes the aggregated
value of x over all the candidates in candidates

i

and updates
variable G

i

accordingly (lines 10 to 12). Notice that at
line 11, we write for simplicity (x,!) 2 candidates

i

instead
of considering (x,!) in the multiset

S
j

candidates
i

[j]. The
update task ends by truncating G

i

to only keep the first l

entries (line 13).
The core routine of TOPiCo is the disseminate task. Its

goal is to broadcast the candidates computed at site i with
a periodicity of � units of time. The candidates are the
l � k most frequent items in L

i

. To determine the value
of l, the disseminate task first computes �, the number of
occurrence of the last item in G

i

(line 15). Then, it traverses
L

i

starting from position k (lines 17 to 22). Every time an

item x successes the candidacy test, l is incremented (line 20);
otherwise the loop ends (line 22). Site i collects the number
of occurrences of items that successfully passed the candidacy
test to form the candidates list C (lines 23 to 26). Then, site
i appends to this list the candidates that were sent by other
sites. (lines 27 to 29), and broadcasts the final content of C
to all sites (line 30).

4.3 Proof of Correctness
This section is devoted to a formal proof of the correctness

of TOPiCo. We formulate this result below then detail how
to achieve it.

Theorem 1. The TOPiCo protocol is eventually perfect.

Proof. (By contradiction.) Let us consider some run
⇢ of the TOPiCo protocol. As G

t

is convergent, we know
that lim

t!1G
t

exists. Let G be that limit and T the time
after which G

t>T

= G holds. At some site j, we note L
j

[l].!
(respectively G

j

[l].!) the number of occurrences of the item
at rank l in L

j

(resp. G
j

), and for some item x, !
x,j

the
number of occurrences of x in W . At every site j, recall that
for every item z at position l in L

j

, we have L
j

[l].! = !

z,j

.
Consider a time t after T in the run ⇢. For the sake of

contradiction, assume that an item x is in G, but not in G
i

at some site i. Name y the last item in G
i

. Since item y

belongs to G
i

and the system is synchronous, y also appears
in every G

j

at the same position l

j

 k. Moreover, as item x

appears in G and not y after time T . there must exist some
site j0 for which !

x,j0 ⇥N > G
j0 [lj ].

From the above analysis, it follows that for every item z

higher than x (and including it) in L
j0 . we have !

z,j0 ⇥N >

G
j0 [k � 1].!, Hence, x passes the candidacy test (line 20) at

site j0. From which we deduce that x is among the candidates
at that site, and is broadcast to all sites (lines 23 to 30).
Then, every site receiving (x,!

x,j0), adds x to its candidates
list, if it was not the case previously (lines 27 to 29). It
follows that at the end of the computation round, x precedes
y in G

i

.

5. EVALUATION
We evaluate TOPiCo using a real workload and a real

implementation. The prototype is implemented using a
combination of C and the Lua programming languages.The
experiments are run on a cluster of 29 bi-quad-core Xeon
machines, each with 8 GB of RAM and interconnected using
a switched 1 Gbps network.

The workload consists of a trace of HTTP requests to the
sites hosting the FIFA World Cup’98 website [1]. The data
was collected for more than 80 days, including during the
competition finale, and contains 240 million requests (events)
over 32 di↵erent sites spread non-uniformely across the globe.

We start by analyzing the properties of the trace. Instead
of fully characterizing the trace, which was done in detail
in [1], here we focus just on the metrics pertinent to this
paper. Next, we evaluate TOPiCo in terms of resource
e�ciency and closeness to the ideal G as computed by an
omniscient entity.

5.1 Workload
Figure 1 shows the evolution of the number of sites and

events during the competition. From the 80 days available in
the trace, in the rest of the evaluation we focus just on days
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Figure 2: Events per minute across all active 29
servers between day-67 and day-75. There are more
than 48 million events during this period.

67 to 75 which correspond to the competition finale. The
reason for this is not only to run the experiments in a more
reasonable timeframe, but also because this is where the
highest load happens, and hence where TOPiCo becomes
more interesting. During this peak period there are 29 active
sites and around 6 million events per day.
In Figure 2, we show the overall number of events per

minute across all sites for this peak period. We use a repre-
sentation based on stacked percentiles throughout this sec-
tion. The white bar at the bottom represents the minimum
value, the pale grey on top the maximal value. Intermediate
shades of grey represent the 25th, 50th -the median-, and
75th percentiles. For instance, the median number of events
per minute around day-70 (during the peak) is 3,000. Clearly,
there are peaks in load which will a↵ect not only resource
consumption but also the closeness of the computed G

i

to
the ideal G.
The e�ciency of TOPiCo, and in general of any top-k

frequent items algorithm, depends on the distribution skew
of events popularity. In fact, if all events where equally pop-
ular, computing the most popular ones would be not only
impractical but also useless. Figure 3 depicts the distribu-
tion of event popularity for several days. as it is possible
to observe, the distribution is mildly skewed meaning that
the di↵erence in popularity on the most popular items is
only moderate. This implies that, sometimes, the list of
candidates to enter the top-k might grow large thus a↵ecting
the e�ciency of TOPiCo. Our experiments evaluating the
e�ciency of TOPiCo confirm this observation.
We complete the characterization of the workload by as-

sessing how the composition of the top-k evolves over time.
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Figure 3: Distribution of event popularity across
several days (the days not shown follow the same
pattern). Note that the plot is log-log.
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Figure 5: Rank stability showing the percentage of
time a position in the rank is occupied by a given
item.

For the sake of visualization, we only show results for K=10
and a sliding window of 20 seconds. A total of 311 di↵erent
items appear in the top-10 during the time period between
day-67 and day-75. Di↵erent perspectives of the same data
are shown in Figure 4 and Figure 5. Each unique item is
associated with a unique color. Figure 4 shows which items
made it to the top-10 over time. Clearly some items are close
to the topmost popular, while others stay mostly close to
the bottom. This indicates that there is some stability on
the most popular items. Figure 5 confirms this observation
by showing the distribution of the time a given position in
the top-k is occupied by a given item. For instance, we can
see that a given item is the most popular (top-1) more than
60% of the time.

5.2 TOPiCo
We now focus on assessing TOPiCo when subject to the

workload described above. Unless stated otherwise, presented
results are the average over all sites with the following pa-
rameters: k=20, the size of the window is 15 seconds and
the update period � is 5 seconds. We start by observing
how e↵ective TOPiCo is in reducing the number of entries
exchanged among sites. A naive approach would always
broadcast the full L

i

regardless of the workload. TOPiCo
on the other hand exchanges just the minimal number of
items necessary to compute correctly G

i

. These results are
show in Figure 6. At Figure 6(top), we show the number
of items sent as a fraction of the total number of items in
L

i

. Clearly, TOPiCo is able to adapt the number of items
sent accordingly to the workload. Still, sometimes up to 80%
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Figure 4: Trends of top-10 ranks computed by an omniscient observer over the 29 active servers. The sliding
window size is 20 seconds. 311 unique events compete for a spot in the top-10 ranks. We notice clear trends
and the extreme volatility of the spots at lower ranks.
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Figure 6: Cost of TOPiCo in terms of entries sent
to other nodes as a function of the entries available
in L

i

(above) and as D entries (below).

of the items in L
i

need to be exchanged. Note that this is
not a limitation of TOPiCo itself, but due to the intrinsic
nature of the workload. In fact, as one can confirm in Fig-
ure 3, the di↵erence in the frequency of the most popular
items is small, implying that the number of candidates for G

i

becomes potentially large. We expect TOPiCo to be able
to significantly reduce the number of items sent when faced
with more skewed workloads. Figure 6(bottom) complements
this by showing, the number of additional items (D) that
need to be sent. Even with this workload, the largest number
of items exchanged is just 31 (k +D = 20 + 11) around day
71. Considering that for each item, we just send the item
identifier and its frequency, the size of the exchanged list is
still very small.
We confirm this by observing the download and upload

throughput of sites, as shown in Figure 7. As expected, this
is mostly a↵ected by the arrival of events depicted in Figure 2.
Both upload and download bandwidth usage remain under
10KB/sec most of the time which is quite small on modern
infrastructures. The fact that few sites upload significantly
more than the majority (notice the di↵erence between the
max and 75th percentile on Figure 7) is because the reception
of events is not uniformly spread across sites, causing some
sites to maintain larger L

i

and with more similar frequencies
near the top, hence requiring to transmit more data.
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Figure 7: Throughput: upload (top) and download
(bottom).

We now focus on the closeness between G
i

, computed
locally at each site, and G computed by an hypothetical
omniscient observer. To this end we use the normalized
Kendall-Tau rank distance which gives the pairwise di↵er-
ences between two ranked lists. A distance of zero means
the lists are equal, while a distance of one means complete
disagreement in the rankings. Figure 8 shows the normalized
Kendall-Tau distance between G and G

i

. Here we split the
servers according to their geographical location: Europe,
US-EastCoast, US-Central and US-WestCoast. The reason
for this is to observe how the geographical location, and
hence, di↵erent access patterns a↵ect the distance to G. As
shown, the distance to the omniscient G is roughly the same
across all regions meaning TOPiCo achieves good results
regardless of the composition of L

i

s in a particular region.
Then, we investigate how the Kendal-Tau distance distance

between G and G
i

performs under peak hours. We choose
the peak hours between day-69 and day-70 (Figure 2). In
this time window, there are as many as 4,500 messages
per minute. Figure 9 reports our result. We observe how
TOPiCo performs similarly to the previous scenario, stating
the benefits of our approach even under heavy load.
Finally, we show the delay between G

i

, computed locally
at each site, and the real instantaneous G. As before, we
consider sites in di↵erent geographical regions. Results are
presented at Figure 10 from day-67 to day-75. Again, the
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di↵erence across regions is negligible meaning TOPiCo is
able to dilute the local di↵erences when computing G. Half of
the time, sites experience a latency smaller than the update
period �. Naturally, by decreasing � we would observe a
reduction in the latency at the expense of bandwidth.
Overall, the evaluation conducted allows us to conclude

that TOPiCo delivers its promises: a lightweight, adaptable
algorithm for computing the top-k most frequent items across
a set of geographically distributed sites.

6. DISCUSSION AND CONCLUSION
In this paper we presented TOPiCo, a lightweight pro-

tocol for computing the top-k frequent items over several
geographically dispersed event streams. TOPiCo works by
selecting, locally at each site, the minimal amount of items

that need to be exchanged such that each site is able to
build a G

i

close to the ideal G as observed by an omniscient
observer. We provide a correctness proof of the algorithm
and evaluate it in a real implementation with a real workload.
The results confirm TOPiCo as a resource e�cient approach
able to adapt to variations in the workload.
In the present work we have not considered site failures.

However, as TOPiCo relies only on local knowledge, and
does not require any form of coordination among site, it
is suited to work on an environment where sites may fail.
Assessing TOPiCo behavior and any potential adjustments
required to tolerate faults is part of our future plans.

Besides, we assume the existence of a broadcast primitive
to disseminate information to all sites. The absence of an
underlying multicast primitive results often in broadcast
being implemented as a series of unicast calls, which limits
the scalability of the system. We plan to overcome these
limitations by extending TOPiCo to disseminate information
using epidemic/gossip based protocols. Such protocols are
known to be highly scalable but also robust to failures which
aligns very well with the goals of TOPiCo we have in mind.
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Appendix	B. 		Deployment	and	execution	instructions	

B.1. Deploying	new	virtual	machines	and	micro-clouds	
LEADS	real-time	processing	platform	and	query	engine	are	already	deployed	at	several	micro-clouds	

offered	 by	 Cloud&Heat,	 and	 at	 two	 micro-clouds	 under	 the	 control	 of	 two	 academic	 partners	

(University	of	Neuchâtel	and	TSI).	For	the	sake	of	completeness,	we	now	present	the	detailed	steps	

of	 adding	 new	 virtual	 machines	 and	 micro-clouds	 to	 the	 platform.	 	 This	 process	 requires	 limited	

technical	knowledge	(basic	knowledge	of	GNU/Linux).	

	

Preparing	a	virtual	machine.	The	step-by-step	process	is	as	follows:	
1. First,	install	java	1.7	and	vert.x	2.1.5	in	the	machine.	Vert.x	needs	to	be	installed	under	

$HOME/bin.	Java	can	be	installed	anywhere	as	long	as	it	is	included	in	the	path.	

2. Copy	file	$HOME/bin/vert.x-2.1.5/bin/vertx	to	vertx1g,	vertx2g,	vertx500m.	

3. Add	the	following	line	near	the	beginning	of	$HOME/bin/vert.x-2.1.5/bin/vertx1g:	

JVM_OPTS="-XX:+CMSClassUnloadingEnabled -XX:-
UseGCOverheadLimit -XX:PermSize=128m -Xmx1g -XX:+UseG1GC -
server"	

4. Add	the	following	line	near	the	beginning	of	$HOME/bin/vert.x-2.1.5/bin/vertx2g:	

JVM_OPTS="-XX:+CMSClassUnloadingEnabled -XX:-
UseGCOverheadLimit -XX:PermSize=128m -Xmx2g -XX:+UseG1GC -
server"	

5. Add	the	following	line	near	the	beginning	of	$HOME/bin/vert.x-2.1.5/bin/vertx500m:	

JVM_OPTS="-XX:+CMSClassUnloadingEnabled -XX:-
UseGCOverheadLimit -XX:PermSize=128m –Xmx500m -XX:+UseG1GC -
server" 

6. Append	the	following	line	to	the	end	of	.bashrc	
export VERTX_MODS=~/.vertx_mods 

7. Append	the	following	line	to	the	end	of	.profile	
export PATH=$PATH:$HOME/bin/vert.x-2.1.5/bin/ 

8. Place	all	jar	files	under	$VERTX_MODS	

9. Place	all	configuration	files	under	$VERTX_MODS/conf	

10. Add	the	following	lines	in	/etc/security/limits.conf	(requires	sudo)	

*             soft nofile      65000 
*             hard nofile      65000 

The	platform	is	ready	to	start.	

Starting	the	LEADS	platform.	The	platform	can	be	started	automatically	at	all	machines	by	executing	

the	bootstrapper	with	the	correct	bootconf.xml	(see	Section	B.3).			

Alternatively,	the	platform	can	be	started	manually,	as	follows:	

1. Create	the	configuration	json	file	(denoted	as	<file.json>	in	the	following)	

2. Clear	folders	/tmp/leads*	using:	rm -rf /tmp/leads*	
3. Change	to	folder	~/.vertx_mods	

4. Run	the	following	commands	to	start	the	engine	(please	run	them	in	different	terminals):	
vertx runMod gr.tuc.softnet~processor-webservice~1.0-SNAPSHOT -conf <file.json> -
cluster 
vertx runMod gr.tuc.softnet~imanager-comp-mod~1.0-SNAPSHOT -conf <file.json> -cluster 
vertx runMod gr.tuc.softnet~log-sink-module~1.0-SNAPSHOT -conf log-sink.json  -cluster 
vertx runMod gr.tuc.softnet~deployer-comp-mod~1.0-SNAPSHOT -conf <file.json> -cluster 
vertx runMod gr.tuc.softnet~nqe-comp-mod~1.0-SNAPSHOT -conf <file.json> -cluster 
vertx runMod gr.tuc.softnet~planner-comp-mod~1.0-SNAPSHOT -conf <file.json> -cluster 
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Stopping	 the	 platform.	 The	 engine	 can	 be	 stopped	 with	 the	 following	 command:	

jps	|	grep	Start	|	awk	{'print	$1'}	|	xargs	kill	-9	

B.2. Loading	data	in	the	query	engine	
Populating	the	query	engine	with	csv	files.		
We	provide	the	load-csv	utility,	which	can	be	executed	as	follows:	
java -cp load-csv-1.0-SNAPSHOT-jar-with-dependencies.jar data.LoadCsv 
[loadRemote|loadEnsembleMulti] pathToDirectoryWithCSVfiles 
[IP:Port|EnsembleString] delayInMs  

	

For	example:		
java -cp load-csv-1.0-SNAPSHOT-jar-with-dependencies.jar data.LoadCsv 
loadRemote /home/ubuntu/cassandra_export_tuc 80.156.73.113:11222 0  
will	 load	all	 records	 from	the	CSV	 files	 in	 folder	 /home/ubuntu/cassandra_export_tuc,	 to	a	 remote	

micro-cloud	accessible	at	80.156.73.113:11222.	 	Each	subsequent	 insert	will	delay	0	msec.	Delaying	

could	be	necessary	to	not	overload	the	machines.	

	

EnsembleString	can	be	used	to	load	data	on	more	than	one	micro-clouds.	The	string	contains	the	list	

of	pairs	of	IP	addresses	and	ports	for	all	Infinispan	nodes	participating	in	the	Ensemble.	A	semicolon	

‘;’	 is	 used	 as	 a	 delimiter	 between	 the	 IP	 addresses	 inside	 each	 micro-cloud,	 and	 ‘|’	 is	 used	 as	 a	

delimiter	between	the	micro-clouds.	For	example,	the	following	EnsembleString	contains	two	micro-

clouds,	each	with	two	VMs:  
'5.147.254.199:11222;5.147.254.195:11222|80.156.73.113:11222;80.156.73.116:11222' 
 
Populating	the	query	engine	with	AMPLab	data.	The	tool	load-AMPLab	can	be	used	as	follows:	

 
java -XX:+UseG1GC -cp load-AMPLab.jar data.LoadAMPLab 
[loadRemote|loadEnsembleMulti] pathToDirectoryWithKeyfiles 
[IP:Port|EnsembleString] delayInMs numberOfRecords sizeOfRecords 
 
As	an	example,	the	following	command	will	create	and	load	1	million	records	of	size	4000,	according	

to	the	keys	stored	in	~/	dataAmpAll:	

 
java -XX:+UseG1GC -server  -cp load-AMPLab.jar data.LoadAMPLab2 
loadEnsembleMulti ~/dataAmpAll/ 
'5.147.254.161:11222|5.147.254.199:11222|80.156.73.113:11222|80.156.222.4:1
1222' 0 1000000 4000 

B.3. Using	the	Bootstrapper	to	configure	and	start	the	platform	
To	 ease	 the	 process	 of	 configuring	 and	 starting	 the	 platform,	 the	 Bootstrapper	 tool	 automatically	

configures	 all	 platform	 components,	 and	 initiates/executes	 the	 components	 over	 all	micro-clouds.	

The	tool	 is	provided	as	a	compressed	file,	and	 includes	the	executable	(a	 jar)	and	a	set	of	required	

xml	files.		

The	user	needs	to	edit	boot_configuration.xml,	to	include	the	micro-cloud	IP	addresses,	micro-cloud	

credentials,	and	configuration	related	to	HDFS,	as	follows.	

 
HDFS configuration parameters 
<hdfs> 
    <uri>hdfs://address:port</uri> // address and port of the hdfs service 
    <user>username</user> // hdfs username 
    <prefix>file_system_prefix</prefix>  
</hdfs> 
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Micro-cloud configuration 
A micro-cloud includes several VMs. Each VM has as name a private IP (adress_1) and a 
public IP (address_2). The following example defines a micro-cloud with name dd1a that 
contains four VMs: 
<MC name='dd1a' credentials="cloudandheat"> 

<node name='leads-qe8' privateIp='10.130.0.16'>80.156.222.4</node> 
<node name='leads-qe14' privateIp='10.130.0.104'>80.156.222.23</node> 
<node name='leads-qe15' privateIp='10.130.0.122'>80.156.222.21</node> 
<node name='leads-qe22' privateIp='10.130.0.128'>80.156.222.31</node> 

</MC> 
 
To	support	automatic	configuration	of	micro-clouds	with	different	credentials,	the	tool	requires	

authorization	information	for	each	micro-cloud.	A	pointer	to	the	credentials	is	defined	using	the	

“credentials”	attribute	in	the	XML.	Each	credential	is	subsequently	defined	in	the	document,	by	

including	the	full	authorization	details.	Two	types	of	credentials	are	supported:	(a)	with	RSA	files,	and	

(b)	with	username/password.	
<ssh> 

<credentials> // a set of credentials for RSA login 
<id>cloudandheat</id> 
<username>ubuntu</username> 
<rsa>/path/to/file.rsa</rsa>  

   </credentials> 
   <credentials> a set of credential for login using user/password 
    <id>tsi</id>  
    <username>ubuntu</username> 
    <password>*********</password> 

</credentials> 
</ssh> 
	

The	VM	running	the	Bootstrapper	needs	to	include	in	~/.ssh/known_hosts	the	ssh	keys	for	all	VMs	

that	will	be	running	the	engine.	This	is	an	inherent	requirement	of	the	ssh	protocol,	and	even	though	

bypassing	it	is	possible	(e.g.,	by	setting	StrictHostKeyChecking=no	in	ssh	config	file),	it	would	pose	

security	risks.	Nevertheless,	it	is	fairly	straightforward	to	include	all	ssh	keys	in	this	file,	by	simply	

establishing	a	regular	SSH	connection	once	from	the	VM	that	runs	the	engine	to	each	of	the	VMs	that	

will	participate	in	the	engine.	In	this	way,	the	known_hosts	file	is	updated	to	include	the	ssh	keys	of	

all	VMs.	

		

Additional	parameters	
The	configuration	file	includes	additional	parameters,	for	which	the	default	values	can	be	kept.	

	

B.4. Running	queries	with	the	command-line	interface	
SQL	 queries	 can	 be	 executed	 using	 the	 LEADS	 command-line	 interface,	 which	 can	 be	 started	 as	

follows		
java -jar leadscli.jar http://WebserviceIP:Port 
with	WebserviceIP:Port	denoting	the	IP:Port	of	the	web	service,	as	given	by	the	bootstrapper.		

	

	


